首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The complex mer-[RuCl3(dppb)(H2O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl2(CO)2(dppb)], ct-[RuCl2(CO)2(dppb)], cis-[RuCl2(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl2(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) complexes. For the synthesis of RuII complexes, the RuIII atom in mer-[RuCl3(dppb)(H2O)] may be reduced by H2(g), forming the intermediate [Ru2Cl4(dppb)2], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl2(dppb)(Cl-bipy)], tc-[RuCl2(CO)2(dppb)] and [RuCl(2Ac4mT)(dppb)] complexes were determined.  相似文献   

2.
[RuCl2(p-cymene)] complexes containing triarylphosphine ligands with various substituents at the para position were used to catalyse the atom transfer radical addition of carbon tetrachloride to various olefins, and their catalytic activities were nicely correlated with their electrochemical parameters.  相似文献   

3.
A new ruthenium hydride species, showing high catalytic isomerization and hydrogenation properties, was isolated via a ligand exchange reaction. The same species was also present in the mixture of degradation products of the monophosphinic complex RuCl(CO)(PCy)3(IPr)CH(Ph), 3, after reaction with alcohols under basic conditions.  相似文献   

4.
The utility of [(NHC)(PPh3)RuCl2(CHPh)] for the facile and efficient synthesis of ten complexes of the type [(NHC)(NHCewg)RuCl2(CHR)] with saturated and unsaturated NHC ligands in 85-94% isolated yield via a simple one step synthesis utilizing [AgI(NHCewg)] as NHCewg transfer reagents was demonstrated.  相似文献   

5.
A kinetic study is reported for the reactions of secondary aromatic amines p-YC6H4NHR (Y = MeO, Me, H; R = Me, Et) with the isocyanide complexes cis-[PdCl2(p-XC6H4NC)(PPh3)] (X = Me, H, Cl) leading to the carbene derivatives cis-[PdCl2 {C(NH-p-C6H4X)NR-p-C6H4Y} (PPh3)] in 1,2-dichloroethane at 25°C. A stepwise mechanism is proposed which involves a direct nucleophilic attack of the entering amine on the isocyanide carbon followed by proton transfers to the final carbene complexes. These take place both intramolecularly in a four-membered cyclic transition state and by the agency of one further amine molecule serving as a proton acceptor-donor in a six-membered transition state. Competition experiments with primary amines and trends in rate parameters are discussed to support the mechanism.  相似文献   

6.
[H(DMSO)2][trans-RuCl4(DMSO)2] (1) reacts with 2,2′-bipyridine in ethanol at room temperature resulting in the formation of a major compound, mer-[RuCl3(DMSO)(bpy)] (bpy = 2,2′-bipyridine) 3 and a known minor compound, cis-[RuCl2(DMSO)4] (4). The compounds 3 and 4 are formed via an anticipated intermediate mer-[RuCl3(DMSO)3] (2). The reaction of 3 and mer-[RuCl3(TMSO)(bpy)] (5) with small molecules like imidazole, carbon monoxide and KSCN yield, mer-[RuCl3(bpy)(im)] · 2DMSO (im = imidazole) (6) and cis-[RuCl2(TMSO)(CO)(bpy)] (7), cis-[RuCl2(DMSO)(CO)(bpy)] (8) and K[RuCl3(bpy)(SCN)] (9), respectively. The formations of 3, 6 and 7 have been authenticated by single crystal structure determinations. Compound 6 is formed by the substitution of DMSO or TMSO from 3 and 5, respectively, whereas 7 and 8 are formed by unprecedented one-electron reductions of 5 and 3. The reactions of 3 and 5 with KSCN resulted in the same compound, K[RuCl3(NCS)(bpy)] (9). DFT calculations were performed to distinguish whether the thiocyanate ligand is bound to ruthenium through S or N. In the ruthenium bipyridine systems, the HOMO contains ruthenium d-orbitals and the LUMO is typically π*-orbitals of the bipyridine ring. Complexes 3, 6 and 7 are redox active in acetone and DMSO solvent showing prominent a reduction peak and corresponding oxidation peak.  相似文献   

7.
Nature of the solvent plays a major role in the photochemical behaviour of cis- and trans-[PtCl2(ethylene)(amine)] complexes. Dimeric compounds [Pt2Cl4-(amine)2] are obtained on irradiation of these complexes in chloroform or diethyl ether. A non-stereospecific reaction of photosubstitution is observed in nitrile solvents. When methanol, dimethoxyethane or dimethylformamide are used as solvents, cis and trans complexes have a quite different photochemical behaviour, but in all of the cases, a photodegradation leading to ionic species [PtCl3(ethylene)]? H+ amine and [PtCl3(amine)]? H+ amine is the main reaction.  相似文献   

8.
Cyclometalated derivatives of ring-substituted N,N-dimethylbenzylamines with controlled redox potentials as potent mediators of bioelectrochemical electron transport are reported. The cycloruthenation of R1R2R3C6H2CH2NMe2 (R1, R2, R3 = H, Me, tBuO, MeO, NMe2, F, CF3, CN, NO2) by [(η6-C6H6)RuCl(μ-Cl)]2 in the presence of NaOH/KPF6 in acetonitrile or pivalonitrile affords cyclometalated complexes [(η6-C6H6)Ru(C6HR1R2R3-o-CH2NMe2)(RCN)]PF6 [R = Me (1) and R = CMe3 (2)] in good yields. Reactions of complexes 1 and 2 with 2,2′-bipyridine (bpy) in acetonitrile or pivalonitrile result in dissociation of η6-bound benzene and the formation of [Ru(C6HR1R2R3-o-CH2NMe2)(bpy)(RCN)2]PF6 [R = Me (3) and R = CMe3 (4)]. All new compounds have been fully characterized by mass spectrometry, 1H/13C NMR, and IR spectroscopy. An X-ray crystal structural investigation of complex 1 (R1/R2/R3 = H/H/H) and two complexes of type 3 (R1/R2/R3 = MeO/H/H, MeO/MeO/H) has been performed. Acetonitrile ligands of 3 are mutually cis and the σ-bound carbon is trans to one of the bpy nitrogens. Measured by the cyclic voltammetry in MeOH as solvent, the redox potentials of complexes 3 for the RuII/III feature cover the range 320-720 mV (versus Ag/AgCl) and correlate linearly with the Hammett constants. Complexes 3 mediate efficiently the electron transport between the active site of PQQ-dependent glucose dehydrogenase (PQQ = pyrroloquinoline quinone) and a glassy carbon electrode. Determined by cyclic voltammetry the second order rate constant for the oxidation of the reduced (by d-glucose) enzyme active site by RuIII derivative of 3 (R1/R2/R3 = H) (generated electrochemically) is as high as 4.8 × 107 M−1 s−1 at 25 °C and pH 7.  相似文献   

9.
The selective in situ synthesis of trans and cis(CH3CN)-[Ru(bpy)(CO)2 (CH3CN)2]2+ isomers from the same [Ru(CO)2 (CH3CN)3]22+ dimer precursor but using either an electrochemical-chemical or chemical-electrochemical process is described.  相似文献   

10.
The dimethyl platinum(II) complex containing mixed ligands, cis-[Pt(CH3)2(PEt3)(AsPh3)] reacted with one equivalent of hydrogen chloride yielding trans-[PtCl(CH3)(PEt3)(AsPh3)]. The X-ray crystal structure of the molecule shows the trans orientation of the PEt3 and AsPh3 ligands.  相似文献   

11.
The five-coordinate complex [RuCl(dppe)2]OTf ([2]OTf) is obtained in high yield by the sequential reduction of RuCl3 · nH2O to RuCl2(PPh3)3, subsequent phosphine substitution to give trans-RuCl2(dppe)2 (trans-1) and finally chloride abstraction (AgOTf, CH2Cl2). The use of [2]OTf as an entry point to mono-acetylide complexes trans-RuCl(CCC6H4R-4)(dppe)2 (3) is described, and represents an alternative route to the long-standing methods based on cis-RuCl2(dppe)2 (cis-1), which is always prepared as a mixture with the more thermodynamically stable trans isomer when prepared by phosphine substitution reactions of RuCl2(dmso)4. The molecular structures of [2]OTf, trans-RuCl(CCC6H4OMe-4)(dppe)2 (3b), trans-RuCl(CCC6H4Me-4)(dppe)2 (3c) and trans-RuCl(CCC6H4CO2Me-4)(dppe)2 (3e) are described. A facile and reproducible synthesis of cis-1 is also reported.  相似文献   

12.
The reaction of Mn2(CO)10 with tert-butyl isocyanide in the presence of 10 bar of carbon monoxide leads to the formation of cis- and trans-[Mn(tBuNC)4(CN)(CO)], 1a and 1b, in good yields together with [Mn(tBuNC)6]CN (2), as a minor product. Nevertheless, the reaction pathway highly depends on the reaction conditions. An interesting side-product is obtained, if chloroform is used during the workup procedure. Compound 3 is composed of cationic [Mn(tBuNC)5(CO)] units as well as dinuclear anionic [Mn(tBuNC)4(CO)(μ-CN)MnCl3] moieties. If no additional CO pressure is applied to the system, the organic product N,N′-di-tert-butyl-3,5-bis-tert-butylimino-4-phenyl-cyclopent-1-ene-1,2-diamine (4), is formed in considerable amount. Compound 4 most probably is produced via a double benzylic C-H activation of the solvent toluene and the oligomerization of four isocyanide moieties. The reaction of 1b with Co(NO3)2 leads to the isolation of the trinuclear cyanide bridged coordination compound {[Mn(tBuNC)4) (CO) (μ-CN)]2Co(NO3)2}, 5, in which the cobalt atoms are tetrahedrally surrounded by the two cyanide ligands and the η1-coordinated nitro groups. In contrast to the reaction of 1b, treatment of the dicyano complexes cis- or trans-[Ru(tBuNC)4(CN)2] with Co(NO3)2 results in the formation of the coordination polymers {[Ru(tBuNC)4(CN)2]Co(NO3)2}n, 7 (trans) and 9 (cis). All new compounds are characterized by X-ray diffraction experiments.  相似文献   

13.
The crystal structures of [Ru(terpy)(HPB)(H2O)](PF6)2, 1, and [Ru(terpy)(HPB)(2-picoline)](PF6), 2, (where terpy = 2,2′:6′,2′′-terpyridine and HPB = 2-(2′-hydroxyphenyl)-benzoxazole) have been determined. Both structures show slightly distorted octahedral coordination around the ruthenium center. In complex 1, the imine nitrogen of the HPB ligand occupies an axial position and is trans to the aqua ligand whereas in complex 2, the imine nitrogen is trans to the nitrogen of the 2-picoline ligand. The Ru-N(2-picoline) bond distance is much longer than the other Ru-N bonds in the complex due to steric effects from the methyl group of 2-picoline. In both complexes, the phenolate oxygen of the HPB ligand is in the equatorial position and trans to the center nitrogen of the terpyridine. The reaction of [Ru(terpy)(HPB)(H2O)](PF6)2 with pyridine and its analogs, 2-picoline and 4-picoline in dichloromethane was monitored spectrophotometrically. There is an initial reduction of the [Ru(III)-H2O] complex to [Ru(II)-H2O] complex prior to the substitution of the aqua ligand. The values of the activation parameters indicate that the substitution of the aqua ligand by pyridine, 2-picoline and 4-picoline follow an associative mechanism.  相似文献   

14.
15.
Five complexes of type cis-[PtCl2(PR3)Q] (PR3 =PMe3, PMe2Ph, PEt3; Q = CH2 CHOCOCH3 or CH2=CHCH2OCOCH3) have been prepared. The crystal structure of cis-[PtCl2[PME2Ph)(CH2=CHOCOCH3)] is described. Crystals of cis-[PtCl2(PME2Ph)(CH2-CHOCOCH3)] are triclinic, with a 8.441(4), b 13.660(5), c 7.697(3) Å, a 101.61(3)°, β 111.85(3)° γ 95.22(3)°, pP1, Z = 2. The structure was determined from 2011 reflections I σ 3σ (I) and refined to R = 0.037. The CH3COO grouping is syn to the cis-PMe2Ph ligand, with bond lengths of PtCl (trans to P) 2.367(3), PtCl (trans to olefin) 2.314(3), PtP 2.264(2), and PtC of 2.147(12) and 2.168(11) Å. The complexes cis-[PtCl2- (PR3)Q] were studied by variable temperature 1H and 31P NMR spectroscopy. Spectra of the vinyl acetate complexes were temperature dependent as a result of rotation about the platinum—olefin bond. The rotation was “frozen out” at ca. 240 K; for cis-[PtCl2(PME2Ph)(CH2=CHOCOCH3] ΔG≠ (rotation) 15.0 ± 0.2 kcal mol-1. NMR parameters for the rotamers are reported. NMR studies of the interaction between chloro-bridged complexes of type [Pt2Cl2(PR3)2] (PR3 = P-N-Pr3 or PMe2Ph) and vinyl acetate shows that even at low temperatures (213 K) equilibrium favours the bridged complex and the proportion of trans-[PtCl2(PR3)CH2=CHOCOCH3)] is very small e.g. 2%. The allyl acetate complexes cis-[PtCl2(PR3)(CH2=CHCH2OCOCH3)] showed only one rotamer over the range 333–213 K. Reversible dissociation of cis-[PtCl2(PMe2Ph)- (CH2=CHCH2OCOCH3)] to [Pt2Cl4(PMe2Ph)2] + allyl acetate was studied at ambient temperature. At low temperatures e.g. 213–190 K addition of allyl acetate to a CDCl3 solution of [Pt2Cl2(P-n-Pr3)2] reversibly gave some olefin complex trans-[PtCl2(P-n-Pr3)(CH2=CHCH2OCOCH3)] and some O-bonded complex trans-[PtCl2(P-n-Pr3)(CH2=CHCH2OCOCH3)].  相似文献   

16.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

17.
Complexation between the Schiff base N4-tetradentate N,N′-bis(7-methyl-2-pyridylmethylene)-1,3-diiminopropane (bpydip) and ion Ru(II) occurs only in trans geometry. However, it is known that the most complex of these ligands with ruthenium present predominantly cis geometry. In order to clarify the effects that drive the formation of the complex [Ru(bpydip)Cl2], we performed a new experimental study of the reaction and a complete theoretical investigation of their transition states. The results showed that nonformation of the cis isomer could be explained by the difference in relative stability of the reaction products and the transition states proposed.  相似文献   

18.
New ruthenium phosphinooxazoline (PHOX) complexes were synthesized and applied in the Mukaiyama aldol reaction. Four ruthenium complexes of the general formula [RuCl2(PHOX)2] were synthesized from [RuCl2(dmso)4] and the corresponding PHOX ligands through thermal ligand exchange. Two of the complexes were characterized structurally. Achiral PHOX ligands gave the ruthenium complexes as single isomers, whereas chiral PHOX ligands gave a mixture of isomers and also some incomplete substitution. After activation by chloride abstraction, one of the new ruthenium complexes was applied as catalyst in the Mukaiyama aldol reaction to give silyl-protected β-hydroxyl alcohols in 74–92% isolated yields (room temperature, 18–24 h reaction time, 1 mol % catalyst loading).  相似文献   

19.
The reaction of RuCl3NO · 2H2O with stoichiometric amount of dppf, 1,1′-bis(diphenylphosphino)ferrocene, afforded the new neutral nitrosyl complex fac-[RuCl3(NO)(dppf)] which was characterized by spectroscopical, electrochemical and X-ray crystallography techniques as well as elemental analysis. The νNO band in the IR spectrum is at 1860 cm−1 (CH2Cl2 solution) and in the cyclic voltammogram an irreversible wave was observed at −1.35 V, both are characteristics of a nitrosonium (NO+) character for the coordinated NO. Additionally, preliminary in vitro antitumor activity against the MDA-MB-231 breast tumor cell line was carried out for the new complex. The initial results indicated an important activity for fac-[RuCl3(NO)(dppf)] (IC50 = 10 ± 3 μM ). The complex has a higher cytotoxicity than the precursor complex RuCl3NO · 2H2O, the free dppf ligand as well as the reference metallodrug cisplatin.  相似文献   

20.
The reaction of [Ru(CO)2(PPh3)3] (1) with o-styryldiphenylphophine (SP) (2) gave [Ru(CO)2(PPh3)(SP)] (3) in 83% yield. This styrylphosphine ruthenium complex 3 can also be synthesized by the reaction of [Ru(p-MeOC6H4NN)(CO)2(PPh3)2]BF4 (4) with NaBH4 and 2 in 50% yield. When “Ru(CO)(PPh3)3” generated by the reaction of [RuH2(CO)(PPh3)3] (8) with trimethylvinylsilane reacted with 2, [Ru(CO)(PPh3)2(SP)] (10) was produced in moderate yield as an air sensitive solid. The spectral and X-ray data of these complexes revealed that the coordination geometries around the ruthenium center of both complexes corresponded to a distorted trigonal bipyramid with the olefin occupying the equatorial position and the C-C bonding in the olefin moiety in 3 and 10 contained a significant contribution from a ruthenacyclopropane limiting structure. Complexes 3 and 10 showed catalytic activity for the hydroamination of phenylacetylene 11 with aniline 12. Ruthenium complex 3 in the co-presence of NH4PF6 or H3PW12O40 proves to be a superior catalyst system for this hydroamination reaction. In the case of the reaction using H3PW12O40 as an additive, ketimines (13) was obtained in 99% yield at a ruthenium-catalyst loading of 0.1 mol%. Some aniline derivatives such as 4-methoxy, 4-trifluoromethyl-, and 4-bromoanilines can also be used in this hydroamination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号