首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a new iterative method in order to approximate a locally unique solution of variational inclusions in Banach spaces. The method uses only divided differences operators of order one. An existence–convergence theorem and a radius of convergence are given under some conditions on divided difference operator and Lipschitz-like continuity property of set-valued mappings. Our method extends the recent work related to the resolution of nonlinear equation in Argyros (J Math Anal Appl 332:97–108, 2007) and has the following advantages: faster convergence to the solution than all the previous known ones in Argyros and Hilout (Appl Math Comput, 2008 in press), Hilout (J Math Anal Appl 339:53–761, 2008, Positivity 10:673–700, 2006), and we do not need to evaluate any Fréchet derivative. We provide also an improvement of the ratio of our algorithm under some center-conditions and less computational cost. Numerical examples are also provided.   相似文献   

2.
This paper is devoted to the stability analysis for a class of Minty mixed variational inequalities in reflexive Banach spaces, when both the mapping and the constraint set are perturbed. Several equivalent characterizations are given for the Minty mixed variational inequality to have nonempty and bounded solution set. A stability result is presented for the Minty mixed variational inequality with Φ-pseudomonotone mapping in reflexive Banach space, when both the mapping and the constraint set are perturbed by different parameters. As an application, a stability result for a generalized mixed variational inequality is also obtained. The results presented in this paper generalize and extend some known results in Fan and Zhong (Nonlinear Anal., Theory Methods Appl. 69:2566–2574, 2008) and He (J. Math. Anal. Appl. 330:352–363, 2007).  相似文献   

3.
This paper mainly concerns the study of a large class of variational systems governed by parametric generalized equations, which encompass variational and hemivariational inequalities, complementarity problems, first-order optimality conditions, and other optimization-related models important for optimization theory and applications. An efficient approach to these issues has been developed in our preceding work (Aragón Artacho and Mordukhovich in Nonlinear Anal 72:1149–1170, 2010) establishing qualitative and quantitative relationships between conventional metric regularity/subregularity and Lipschitzian/calmness properties in the framework of parametric generalized equations in arbitrary Banach spaces. This paper provides, on one hand, significant extensions of the major results in op.cit. to partial metric regularity and to the new hemiregularity property. On the other hand, we establish enhanced relationships between certain strong counterparts of metric regularity/hemiregularity and single-valued Lipschitzian localizations. The results obtained are new in both finite-dimensional and infinite-dimensional settings.  相似文献   

4.
In this paper we extend the coupled contraction mapping theorem proved in partially ordered metric spaces by Gnana Bhaskar and Lakshmikantham (Nonlinear Anal. TMA 65:1379–1393, 2006) to a coupled coincidence point result for a pair of compatible mappings. A control function has been used in our theorem. The mappings are assumed to satisfy a weak contractive inequality. Our theorem improves the results of Harjani et al. (Nonlinear Anal. TMA 74:1749–1760, 2011). The result we have established is illustrated with an example which also shows that the improvement is actual.  相似文献   

5.
Arnold, Falk, and Winther recently showed (Bull. Am. Math. Soc. 47:281–354, 2010) that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article (arXiv:), we extended the Arnold–Falk–Winther framework by analyzing variational crimes (à la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace–Beltrami operator on 2- and 3-surfaces, due to Dziuk (Lecture Notes in Math., vol. 1357:142–155, 1988) and later Demlow (SIAM J. Numer. Anal. 47:805–827, 2009), as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold–Falk–Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.  相似文献   

6.
In this paper, we study a Neumann problem for elliptic systems with variable exponents. We obtain the existence of at least three nontrivial solutions by using an equivalent variational approach to a recent Ricceri’s three critical points theorem (Ricceri in Nonlinear Anal TMA 70:3084–3089, 2009).  相似文献   

7.
The purpose of this paper is to consider a shrinking projection method of finding the common element of the set of common fixed points for a finite family of a ξ-strict pseudo-contraction, the set of solutions of a systems of equilibrium problems and the set of solutions of variational inclusions. Then, we prove strong convergence theorems of the iterative sequence generated by the shrinking projection method under some suitable conditions in a real Hilbert space. Our results improve and extend recent results announced by Peng, Wang, Shyu and Yao (J Inequal Appl, 2008:15, Article ID 720371, 2008), Takahashi, Takeuchi and Kubota (J Math Anal Appl 341:276–286, 2008), Takahashi and Takahashi (Nonlinear Anal 69:1025–1033, 2008) and many others.  相似文献   

8.
In this paper, we study the solution stability of parametric weak Vector Variational Inequalities with set-valued and single-valued mappings, respectively. We obtain the lower semicontinuity of the solution mapping for the parametric set-valued weak Vector Variational Inequality with strictly C-pseudomapping in reflexive Banach spaces. Moreover, under some requirements that the mapping satisfies the degree conditions, we establish the lower semicontinuity of the solution mapping for a parametric single-valued weak Vector Variational Inequality in reflexive Banach spaces, by using the degree-theoretic approach. The results presented in this paper improve and extend some known results due to Kien and Yao (Set-Valued Anal. 16:399–412, 2008) and Wong (J. Glob. Optim. 46:435–446, 2010).  相似文献   

9.
10.
Applying generalized KKM-type theorems established in our previous paper (Khanh et al. in Nonlinear Anal. 71:1227–1234, 2009), we prove the existence of solutions to a general variational inclusion problem, which contains most of the existing results of this type. As applications, we obtain minimax theorems in various settings and saddle-point theorems in particular. Examples are given to explain advantages of our results.  相似文献   

11.
In this paper, we introduce two iterative schemes (one implicit and one explicit) for finding a common element of the set of solutions of the generalized equilibrium problems and the set of all common fixed points of a nonexpansive semigroup in the framework of a real Hilbert space. We prove that both approaches converge strongly to a common element of such two sets. Such common element is the unique solution of a variational inequality, which is the optimality condition for a minimization problem. Furthermore, we utilize the main results to obtain two mean ergodic theorems for nonexpansive mappings in a Hilbert space. The results of this paper extend and improve the results of Li et al. (J Nonlinear Anal 70:3065–3071, 2009), Cianciaruso et al. (J Optim Theory Appl 146:491–509, 2010) and many others.  相似文献   

12.
Recently, O’Hara, Pillay and Xu (Nonlinear Anal. 54, 1417–1426, 2003) considered an iterative approach to finding a nearest common fixed point of infinitely many nonexpansive mappings in a Hilbert space. Very recently, Takahashi and Takahashi (J. Math. Anal. Appl. 331, 506–515, 2007) introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. In this paper, motivated by these authors’ iterative schemes, we introduce a new iterative approach to finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of infinitely many nonexpansive mappings in a Hilbert space. The main result of this work is a strong convergence theorem which improves and extends results from the above mentioned papers.  相似文献   

13.
This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247–263, 2008) and Liu (Nonlinear Anal. 71:2257–2267, 2009) in which only the exponential and polynomial decay rates are considered.  相似文献   

14.
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.  相似文献   

15.
Based on the generalized graph convergence, first a general framework for an implicit algorithm involving a sequence of generalized resolvents (or generalized resolvent operators) of set-valued A-maximal monotone (also referred to as A-maximal (m)-relaxed monotone, and A-monotone) mappings, and H-maximal monotone mappings is developed, and then the convergence analysis to the context of solving a general class of nonlinear implicit variational inclusion problems in a Hilbert space setting is examined. The obtained results generalize the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) involving the classical resolvents to the case of the generalized resolvents based on A-maximal monotone (and H-maximal monotone) mappings, while the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) added a new dimension to the classical resolvent technique based on the graph convergence introduced by Attouch (in Variational Convergence for Functions and Operators, Applied Mathematics Series, Pitman, London 1984). In general, the notion of the graph convergence has potential applications to several other fields, including models of phenomena with rapidly oscillating states as well as to probability theory, especially to the convergence of distribution functions on ℜ. The obtained results not only generalize the existing results in literature, but also provide a certain new approach to proofs in the sense that our approach starts in a standard manner and then differs significantly to achieving a linear convergence in a smooth manner.  相似文献   

16.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

17.
The aim of this work is twofold. First, we use the advanced tools of modern variational analysis and generalized differentiation to study the Lipschitz-like property of an implicit multifunction. More explicitly, new sufficient conditions in terms of the Fréchet coderivative and the normal/Mordukhovich coderivative of parametric multifunctions for this implicit multifunction to have the Lipschitz-like property at a given point are established. Then we derive sufficient conditions ensuring the Lipschitz-like property of an efficient solution map in parametric vector optimization problems by employing the above implicit multifunction results.  相似文献   

18.
A recent paper of Arnold, Falk, and Winther (Bull. Am. Math. Soc. 47:281–354, 2010) showed that a large class of mixed finite element methods can be formulated naturally on Hilbert complexes, where using a Galerkin-like approach, one solves a variational problem on a finite-dimensional subcomplex. In a seemingly unrelated research direction, Dziuk (Lecture Notes in Math., vol. 1357, pp. 142–155, 1988) analyzed a class of nodal finite elements for the Laplace–Beltrami equation on smooth 2-surfaces approximated by a piecewise-linear triangulation; Demlow later extended this analysis (SIAM J. Numer. Anal. 47:805–827, 2009) to 3-surfaces, as well as to higher-order surface approximation. In this article, we bring these lines of research together, first developing a framework for the analysis of variational crimes in abstract Hilbert complexes, and then applying this abstract framework to the setting of finite element exterior calculus on hypersurfaces. Our framework extends the work of Arnold, Falk, and Winther to problems that violate their subcomplex assumption, allowing for the extension of finite element exterior calculus to approximate domains, most notably the Hodge–de Rham complex on approximate manifolds. As an application of the latter, we recover Dziuk’s and Demlow’s a priori estimates for 2- and 3-surfaces, demonstrating that surface finite element methods can be analyzed completely within this abstract framework. Moreover, our results generalize these earlier estimates dramatically, extending them from nodal finite elements for Laplace–Beltrami to mixed finite elements for the Hodge Laplacian, and from 2- and 3-dimensional hypersurfaces to those of arbitrary dimension. By developing this analytical framework using a combination of general tools from differential geometry and functional analysis, we are led to a more geometric analysis of surface finite element methods, whereby the main results become more transparent.  相似文献   

19.
In this paper we construct a new class of bilinear pseudodifferential operators which contains both the Coifman-Meyer class as well as the non-translation invariant class closely related both to the bilinear Hilbert transform and previously studied in Bényi et al. (J. Geom. Anal. 16(3):431–453, 2006), Bényi et al. (J. Anal. Math., 2009), Bernicot (Anal. PDE 1:1–27, 2008) as well as the bilinear Marcinkiewicz class studied in Grafakos and Kalton (Stud. Math. 146(2):115–156, 2001). We prove boundedness on Sobolev spaces for these operators as well as establish a symbolic calculus that exhibits the nice behavior of our new class under transposition and composition with linear operators.  相似文献   

20.
In this paper we investigate POD discretizations of abstract linear–quadratic optimal control problems with control constraints. We apply the discrete technique developed by Hinze (Comput. Optim. Appl. 30:45–61, 2005) and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from Kunisch and Volkwein (Numer. Math. 90:117–148, 2001; SIAM J. Numer. Anal. 40:492–515, 2002). Finally, we present numerical examples that illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号