首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New radical cation salts (TMTSF)2[3,3′-Co(1,2-C2B9H11)2] (1), (TTF)[3,3′-Co(1,2-C2B9H11)2] (2) and (ET)[3,3′-Co(1,2-C2B9H11)2] (3) were synthesized and their crystal structures and electrical conductivities were determined. Compound 1 has layered structure with conducting stacks of the TMTSF cations, whereas compounds 2 and 3 contain separated pairs of fulvalenium cations. Conductivity of crystals 1 at room temperature was found to be 15 Ohm−1 cm−1, that is the maximum value found for fulvalenium metallacarborane salts.  相似文献   

2.
New molecular conductors on the base of 8,8′-diiodo cobalt bis(dicarbollide) anion (TTF)[8,8′-I2-3,3′-Co(1,2-C2B9H10)2] (1), (BMDT-TTF)4[8,8′-I2-3,3′-Co(1,2-C2B9H10)2] (2) and (BEDT-TTF)2[8,8′-I2-3,3′-Co(1,2-C2B9H10)2] (3) were synthesized and their crystal structures and electrical conductivities were determined. All the radical cation salts prepared were found to be semiconductors. Some regularities in the crystal structures of the TTF-based radical cation salts with bis(dicarbollide) complexes of transition metals are discussed.  相似文献   

3.
A series of various functional derivatives of the cobalt bis(1,2-dicarbollide) anion [8-XCH2CH2OCH2CH2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (X=OH, NH2, and CH(NH2)COOH) were prepared by the ring-opening reactions of [8-O(CH2CH2)2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] with different nucleophiles followed by functional group interconversion reactions. Acidic hydrolysis of [8-NCCH2CH2OCH2CH2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] resulted in the shorter-chain alcohol [8-HOCH2CH2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)]. Structures of (Bu4N)[8-AcNHC(COOEt)2CH2CH2OCH2CH2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] and [8-(1-C5H5N)CH2CH2OCH2CH2O-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were determined by the single crystal X-ray diffraction method. Perspectives of application of functionalized cobalt bis(1,2-dicarbolide) derivatives in nuclear medicine are discussed.  相似文献   

4.
New boron substituted cobalta bis(dicarbollide)(1-) ion (1) derivatives of formula [(8,8′-(RPhP(O)(CH2)nC(O)N) < (1,2-C2B9H10)2-3,3′-Co] (R = Ph or C8H17, n = 1, 3a, 3b; R = Ph, n = 2, 3c), [(8-(Ph2P(O)CH2C(O)NR)(1,2-C2B9H10))(1′,2′-C2B9H11)-3,3′-Co] (R = H, C2H5, CH2C6H5, 5a-c) and [(8-(2RPhP(O)CH2C(O)N(1R)CH2-1,2-C2B9H10))(8′-CH3O-1′,2′-C2B9H10)-3,3′-Co] (1R = Benzyl, 2R = Ph or C8H17, 7a,b) were prepared with the aim to develop a new class of efficient extraction agents for partitioning of polyvalent f-block elements, i.e. lanthanides and actinides from high-level activity nuclear waste. The anionic ligands were characterized by multinuclear NMR spectroscopy and MS, the structures of Cs3a and the calcium complex of 7a were determined by X-ray diffraction analysis. The crystallographic study of the Cs3a proved a formation of linear chains in the structure, where the metal cation is coordinated by oxygen atoms of the CMPO terminal groups. The X-ray structure of the Ca2+ complex of the ionic ligand 7a proved a 1:3 metal to ligand ratio. Presented also is the X-ray structure of the starting ammonium compound 6 used in the synthesis of 7a and 7b. With exception of 5c, these anionic ligands are of high extraction efficiency, the highest being found for 7a in low polar solvent mixture hexyl methyl ketone-dodecane 1:1. These properties qualify some of these derivatives for possible technological applications.  相似文献   

5.
The synthesis of a new, paramagnetic closo-[(8-(-CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe]0 (3) is reported. This compound can serve as a versatile building block for construction of both anionic and zwitterionic derivatives, as exemplified by the synthesis of a series of compounds of general formula closo-[(8-X-(CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe], bearing organic end groups (X = NC5H5 (4), (C6H5)3P (5), OH (6), and 2-O(1-CH3O-C6H4) (7)) attached to the cluster by a diethyleneglycol spacer. Molecular structures of 3, 4, 5 and 7 were determined by single-crystal X-ray diffraction analysis and by the long-time neglected method of paramagnetic, high field NMR (1H, 13C and 11B) spectroscopy.  相似文献   

6.
The treatment of 1,2-, 1,7- and 1,12-carbaborane lithiated isomers with [3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-(1′,2′-C2B9H11)] (1) at molar ratios 1:1 or 1:2 at room temperature in THF leads generally to the formation of a series of orange double-cluster mono and dianions. These were characterized by NMR and MS methods as [1′′-X-1′′,2′′-closo-C2B10H11], [2]; [1′′-X-1′′,7′′-closo-C2B10H11], [3] and [1′′-X-1′′,12′′-closo-C2B10H11], [4] for the monoanions, whereas [1′′,2′′-X2-1′′,2′′-closo-C2B10H10]2−, [2]2−; [1′′,7′′-X2-1′′,7′′-closo-C2B10H10]2−, [3]2−; and [1′′,12′′-X2-1′′,12′′-closo-C2B10H10]2−, [4]2− for the dianions (where X = 3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-1′,2′-(C2B9H11)). Moreover, these borane-cage subunits can be easily modified via attaching variable substituents onto cage carbon and boron vertices, which makes these compounds structurally flexible potential candidates for BNCT of cancer and HIV-PR inhibition.  相似文献   

7.
Complexation of the 8,8′-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides) [8,8′-(MeS)2-3,3′-M(1,2-C2B9H10)2] (M = Co, Fe) with copper, silver, palladium and rhodium leads to the formation of the corresponding chelate complexes, which is accompanied by a transition from the transoid to the cisoid conformation of the bis(dicarbollide) complex. This transition is reversible and can be used in design of coordination-driven molecular switches based on transition metal bis(dicarbollide) complexes. The solid-state structures of {(Ph3P)ClPd[8,8′- (MeS)2-3,3′-Co(1,2-C2B9H10)22-S,S′]} and {(COD)Rh[8,8′-(MeS)2-3,3′-Co(1,2-C2B9H10)22-S,S′]} were determined by single crystal X-ray diffraction.  相似文献   

8.
The 8,9′-[closo-{3-Co(η5-C5H5)-1,2-C2B9H10}]2 (1) species, in which two large closo-CoC2B9 sub-clusters are connected by a B-B bond, is unexpectedly obtained from the reaction of closo-[3-Co(η5-C5H5)-1,2-C2B9H11] with sulfur in the presence of aluminium chloride under reflux conditions. The solid state conformation of 1 seems to be the result of a pair of intramolecular C-H?H-B dihydrogen bonds between the protonic H atoms of the C5H5 fragment of a sub-cluster and the hydridic H atoms of the C2B9H11 fragment in the other sub-cluster in 1.  相似文献   

9.
Five new carborane dicyclohexylphosphine complexes, [Ag2(μ-I)2{1,2-(P Cy2)2-1,2-C2B10H10}2] (1), [Ag2(SCN)2{1,2-(PCy2)2-1,2-C2B10H10}2]n·CH2Cl2 (2), [Ag(ClO4){1,2-(PCy2)2-1,2-C2B10H10}]·CH2Cl2 (3), [Ag2(μ-NO3)2{1,2-(PCy2)2-1,2-C2B10H10}2]·CH2Cl2 (4) and [Ag(SC6H4COOH){1,2-(PCy2)2-1,2-C2B10H10}2]·CH2Cl2 (5), have been synthesized by the reactions of 1,2-bis(dicyclohexylphosphino)-1,2-dicarba-closo-dodecaborane with AgX (X = I, SCN, ClO4, NO3 and SC6H4COOH) in CH2Cl2. The structures of the five complexes were characterized by elemental analysis, FT-IR, 1H, 13C, 11B and 31P NMR spectroscopy. X-ray structure analysis revealed that the structures of the complexes can be classified into three types. Complexes 1 and 4 are di-μ-X-bridged structures and complexes 3 and 5 are mononuclear structures, while complex 2 is a chain-like polymer. Complexes 1 and 2 form 2D supramolecular networks and complexes 3, 4 and 5 form 1D chains via C-H?H-B dihydrogen bonding interactions.  相似文献   

10.
A series of novel cobalt bis(dicarbollide) based amidines were synthesized by the nucleophilic addition of primary and secondary amines to highly activated B-N+≡C–R triple bond of the propionitrilium derivative [8-EtC≡N-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)]. The reactions with primary amines result in the formation of mixtures of E and Z isomers of amidines, whereas the reactions with secondary amines lead selectively to the E-isomers. The crystal molecular structures of E-[8-EtC(NMe2)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)], E-[8-EtC(NEt2)=HN-3,3′-Co(1,2- C2B9H10)(1′,2′-C2B9H11)] and E-[8-EtC(NC5H10)=HN-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] were determined by single crystal X-ray diffraction.  相似文献   

11.
Three nickel(II) carborane complexes, [Ni2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] (1), [Ni{7-(OPPh2)-8-(PPh2)-7,8-C2B9H10}{7,8-(PPh2)2-7,8-C2B9H10}] (2) and [NiBr2{1,2-(PPh2)2-1,2-C2B10H10}] · CH2Cl2 (3), have been synthesized by the reactions of 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane with NiCl2 · 6H2O or NiBr2 · 6H2O in ethanol under different conditions, respectively. For complex 1, it could also be obtained under the solvothermal condition. All the three complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal analysis shows that the molecular symmetry of complex 1 is centrosymmetric, containing two same structure units - Ni(7,8-(PPh2)2-7,8-C2B9H10) linked by two bridged-Cl atoms. The central square plane formed by the [Ni2Cl2] unit is almost parallel to the two side NiPP planes. For complex 2, the coordination environment of the Ni atom is a seriously distorted square-planar, in which two positions come from the chelating diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] degraded from the closo species, while the other two are occupied by an unsymmetrical chelating phosphine oxide ligand [7-(OPPh2)-8-(PPh2)-7,8-C2B9H10]. As for complex 3, the geometry at the Ni atom is a slightly distorted square-planar. The closo carborane diphosphine ligand 1,2-(PPh2)2-1,2-C2B10H10 was coordinated bidentately to the metal ion through the two phosphorus atoms, and the two Br atoms are at cis position which can fulfill the four coordination mode of the metal.  相似文献   

12.
A new family of three-legged piano stool structured organometallic compounds containing the fragment η5-cyclopentadienyl-ruthenium(II)/iron(II) has been synthesized to evaluate the existence of electronic metal to ligand charge transfer upon coordination of the novel benzodithiophene ligands (BDT), benzo[1,2-b;4,3-b′]dithiophen-2-carbonitrile (L1) and benzo[1,2-b;4,3-b′]dithiophen-2′nitro-2-carbonitrile (L2). All the compounds were characterized by 1H, 13C, 31P NMR, IR and UV-Vis. spectroscopies and their electrochemistry studied by cyclic voltammetry. The X-ray structures of [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][PF6] (1Ru), [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][CF3SO3] (1Ru), [Ru(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] 2Ru and [Fe(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] (2Fe) were determined by X-ray diffraction showing centric crystallization on groups and P21/n, respectively.Quadratic hyperpolarizabilities (β) of some of the complexes (2Fe, 2Ru and 3Fe) have been determined by hyper-Rayleigh scattering (HRS) measurements at a fundamental wavelength of 1500 nm, to minimize the probability of fluorescence due to two-photon absorption and to reduce the effect of resonance enhancement, in order to estimate static β values.  相似文献   

13.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

14.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

15.
The reaction of fulvene 1 with TlOEt in THF affords [Tl{1,2-C5H3(COC4H3O)2}] (2) in 60% yield. Treatment of 2 with [MBr(CO)5] (M = Mn, Re) in benzene reflux gave [Mn{η5-1,2-C5H3(COC4H3O)2}(CO)3] (3A) and [Re{η5-1,2-C5H3(COC4H3O)2}(CO)3] (3B) in 61% and 66% yields, respectively. Diacyl complexes 3A and 3B were ring-closed to the pyridazine by treating with hydrazine hydrate in methanol at room temperature. Fulvene 1 and diacyl complexes 3A and 3B have been structurally characterized by X-ray crystallography. Additionally, the electronic structure of complexes 3A and 3B and their relaxed structures have been characterized with density functional calculations. Calculated vibrational frequencies are compared with the experimental characterizations.  相似文献   

16.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl of complex 3 with I. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes.  相似文献   

17.
Five iron(II) coordination polymers, {[Fe(bte)2(NCS)2][Fe(bte)(H2O)2(NCS)2]}n (1), [Fe(bime)(NCS)2]n (2), [Fe(bime)(dca)2]n (3), [Fe(bime)2(N3)2]n (4) and [Fe(btb)2(NCS)2]n (5), were synthesized using the flexible ligands 1,2-bis(1,2,4-triazol-1-yl)ethane (bte), 1,2-bis(imidazol-1-yl)ethane (bime) and 1,4-bis(1,2,4-triazol-1-yl)butane (btb), together with NCS, dicyanamide (dca) and N3. The compound 1 contains two kinds of motifs (double chain and single chain) and forms a three-dimensional hydrogen bonded network; 2 and 3 contain one-dimensional triple chains; and 4 and 5 form two-dimensional (4, 4) networks. The coordination anions (NCS, dca and N3) and the structural characteristics of the ligands (bte, bime and btb) play an important role in the assembly of the topologies. Magnetic studies reveal that 1-5 remain in the high-spin state over the whole temperature range 2-300 K and no detectable spin-crossover is observed.  相似文献   

18.
Reactions of [3,3-(PPh3)2-3-Cl-3-H-3,1,2-closo-RuC2B9H11] (1) and its exo-nido isomer [exo-5,6,10-{Ru(Ph3P)2Cl}-5,6,10-(μ-H)3-10-H-7,8-nido-C2B9H8] (2) with NH4PF6 in methanol or ethanol solution followed by heating in the presence of an excess of phenylacetylene (3) affords a mixture of two isomeric closo species [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-8-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (4) and [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-4-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (5) in which boron vertexes in β- and α-sites with respect to the cage carbons bear the (E)-CHCHPh group. The X-ray diffraction study of 4 together with the multinuclear NMR data for 4 and 5 revealed that such an unusual η32-phosphacarbocyclic ligand in both isomeric complexes is formed by specific insertion of the initially metal-bound PPh3 group into the chain of two alkyne molecules coupled in a “head-to-tail” fashion around the metal vertex.  相似文献   

19.
Halogenation of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-SMe2-7,8-C2B9H11] with N-chlorosuccinimide, bromine and iodine gave the expected corresponding halogen derivatives [9-SMe2-11-X-7,8-C2B9H10], where X = Cl (1), Br (2), I (3). In the bromination reaction, [9-SMe2-6-Br-7,8-C2B9H10] (4) was isolated as a minor product being the first example of substitution at a “lower” belt of the 7,8-dicarba-nido-undecaborate cage. The use of excess of bromine resulted in dibromo derivative [9-SMe2-6,11-Br2-7,8-C2B9H9] (5). Structures of the compounds prepared were determined using 11B-11B COSY NMR spectroscopy (for all halogen derivatives) and single crystal X-ray diffraction (for compounds 2, 3, and 5).  相似文献   

20.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with trans-1,2-bis(2-pyridyl)ethene (C12H10N2) at room temperature in tetrahydrofuran affords the compounds [Re2(μ:η3-C12H10N2)(CO)8] (1) and the oxidative addition product [Re2(μ-H)(μ:η3-C12H9N2)(CO)7] (2). When the reaction is carried out at temperatures of refluxing tetrahydrofuran, besides compounds 1 and 2, the oxidative addition product [Re2(μ-H)(μ:η4-C12H9N2)(CO)6] (3), the insertion product [Re2(μ:η4-C12H10N2)(CO)8] (4) and [Re2(μ:η6-C24H18N4)(CO)6] (5) are obtained. Compound 5 contains the organic ligand rtct-tetrakis(2-pyridyl)cyclobutandiyl which is derived from a [2 + 2] cycloaddition of 1,2-bis(2-pyridyl)ethene mediated by its coordination to the bimetallic framework. The molecular structures of 1, 2, 4 and 5 were confirmed by X-ray crystallographic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号