首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight dialkylgallium complexes of type R2GaL [(M = Me, L = 1-(2-pyridyl)methyleneimino-2-naphthonato (1), M = Et, L = 1-(2-pyridyl)methyleneimino-2-naphthonato (2), M = Me, L = 1-phenylmethyleneimino-2-naphthonato (3), M = Et, L = 1-phenylmethyleneimino-2-naphthonato (4), M = Me, L = 1-(p-methoxylphenyl)methyleneimino-2-naphthonato (5), M = Me, L = 1-(3,4-dimethoxylphenyl)methyleneimino-2-naphthonato (6), M = Me, L = 1-naphthylmethyleneimino-2-naphthonato (7), M = Me, L = 1-naphthylmethyleneimino-2-naphthonato (8)) have been synthesized by reaction of trialkylgallium with appropriate 1-arylmethyleneimino-2-naphthols. The complexes have been characterized by elemental analysis, 1H NMR, IR and mass spectrometry. Structure of dimethyl[1-(2-pyridyl)methyleneimino-2-naphthonato]gallium (1) has been determined by X-ray single crystal analysis. Ga atom is five coordinate in the structure. Photoluminescent properties have been measured. The maximum emission wavelengths are in the range of 358 and 412 nm with the intensity of 13-325 a.u. The electroluminescent properties of 3, 5, 7 and 8 have been measured. The maximum emission wavelengths are in the range of 450 and 480 nm.  相似文献   

2.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

3.
Two new N-pyrazole, P-phosphinite hybrid ligands 3-(3,5-dimethyl-1H-pyrazol-1-yl)propyldiphenylphosphinite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L4) are presented. The reactivity of these ligands and two other ligands reported in the literature (3,5-dimethyl-1H-pyrazol-1-yl)methyldiphenylphosphinite (L1) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L2) towards [RhCl(CO)2]2 (1) have been studied and complexes [RhCl(CO)L] (L = L2 (2), L3 (3) and L4 (4)) have been obtained. For L1 only decomposition products have been achieved. All complexes were fully characterised by analytical and spectroscopic methods and the resolution of the crystalline structure of complexes 2 and 3 by single-crystal X-ray diffraction are also presented. In these complexes, the ligands are coordinated via κ2(N,P) to Rh(I), forming metallocycles of seven (2 and 4) or eight (3) members and finish its coordination with a carbonyl monoxide and a trans-chlorine to phosphorus atom. In both complexes, weak intermolecular interactions are present. NMR studies of complexes 2-4 show the chain N-(CH2)x-O becomes rigid and the protons diastereotopic.  相似文献   

4.
The synthesis of a new series of mono- and oligothiophenes capped by 7-azaindoles such as 2-(N-azaindolyl)thiophene (1), 2-(N-azaindolyl)-5′-(bromo)oligothiophenes (2a-4a), and 2,5′-bis(N-azaindolyl)oligothiophenes (2b-4b) has been investigated. The reaction of 7-azaindole with 2-bromothiophene under the modified Ullmann condensation conditions led to the formation of 1. Simple extension of the same method to the reaction of 2,5′-dibromooligothiophenes in the presence of 4-5 M excess of 7-azaindole led to the formation of 2a-4a and 2b-4b in moderate overall yields (40-55%). All compounds were fully characterized by analytical and various spectroscopic techniques. The structures of 2b, 3b, and 4b were determined by X-ray diffraction analyses. All three compounds show several intermolecular C(π)?H interactions leading to the formation of herringbone packing in the solid-state structure. The UV absorption spectra of 1-4 consist of three characteristic electronic transitions corresponding to n→π and π→π transitions arising out of the π-conjugation of the entire molecule as well as local aromatic units. The emission spectra of the same compounds show intense fluorescence bands at the wavelengths between 422 and 495 nm. The length of the thiophene chain and the presence of bromine atom influence the band position of both absorption and emission spectra. While the extension in π-conjugation causes the reduction in the band gap, the bromine atom shifts the electronic transition energy to the blue region. The cyclic voltammetric measurements were performed with 1-4, which show that the compounds exhibit a typical pseudo-reversible redox wave with Eox in the range 0.6-1.2 V.  相似文献   

5.
Three unique propeller-shaped helicenyl amines compounds: N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine (1), N-phenyl-N,N-di(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (2), and N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (3) were efficiently synthesized by Wittig reaction and oxidative photocyclization. The crystal structures of 1, 2 and molecular configuration optimization (DFT-B3LYP/6-31+G(d)) of 3 reveal that the steric hindrance from the moiety of trithia[5]helicene effectively forces the nitrogen atom and the three bonded carbon atoms to coplanar and the interplanar angles of the facing terminal thiophene ring and benzene ring becoming larger when the helical arm increased from 1 to 3. Electrochemical properties and UV–vis absorption behaviors of 1, 2, 3 were primarily determined by the moiety of trithia[5]helicene.  相似文献   

6.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

7.
The reaction of boron heterocycles 1 and 2 with n-butyl lithium and alkyl halides led to (N→B) phenyl[N-alky-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 36(ab), 7(b) and 9(b), where alkyl can be in exo and/or endo position, and phenyl[N-alkyl-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 7(c) and 8(c) isomers, which do not display the intramolecular N→B coordination bond. The existence of steric interactions between N-benzyl and the alkyl group at 2 position was indicated by 1H and 13C NMR, while, the δ(11B) values confirm the tetrahedral and trigonal environment of the 11B nucleus in these compounds. Moreover, the compounds were characterized by COSY, HETCOR and homonuclear proton decoupling experiment. The study of the intramolecular N→B coordination by dynamic NMR afforded a ΔG‡ value of 81.09 kJ/mol for compound 6(b).  相似文献   

8.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

9.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

10.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

11.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

12.
13.
Copper complexes [Cu(Ln)2] 1-4 bearing N,O-chelating β-ketoamine ligands Ln based on condensation products of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with aniline (L1), α-naphthylamine (L2), o-methylaniline (L3), and p-nitroaniline (L4), respectively, were synthesized and characterized by IR, 1H NMR and X-ray crystallography (except 2). They were shown to catalyze the vinyl polymerization of norbornene when activated by methylaluminoxane (MAO). Both steric and electronic effects are important and influential factors contributing to the catalytic activity of the complexes with the order of 2 > 4 > 3 > 1.  相似文献   

14.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

15.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

16.
The novel compounds, N-(trifluorosilylmethyl)-[N-(S)-(1-phenylethyl)]-acetamide (1a) and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine (1b) have been prepared from the corresponding NH-compounds using ClCH2SiCl3/Et3N or ClCH2SiCl3/(Me3Si)2NH followed by methanolysis or hydrolysis of the reaction mixture in the presence of Lewis bases, and then BF3 etherate. Potassium-(18-crown-6)-(2-oxoperhydroazepinomethyl)tetrafluorosilicate (2) was synthesized by reaction of the trifluoride (1b) with KF in the presence of 18-crown-6. Using 19F, 29Si NMR and X-ray diffraction techniques it was established that the silicon atom is pentacoordinate in the trifluorides (1ab) and hexacoordinate in the adduct 2. Thus the internal coordination of the O → Si bond present in the trifluoride (1b) is retained in the adduct 2.The stereochemical non-rigidity of the trifluorides (1ab) and the N-(trifluorosilylmethyl)-N-methylacetamide (1c) was investigated using dynamic 19F NMR spectroscopy. The activation barriers for permutational isomerization are in the range 9.5-10 kcal mol−1. Lower values of ΔG# for permutation of trifluorides (1a-c) compared to the monofluorides with the coordination core OSiC3F together with small negative values for the activation entropy implies a non-dissociative mechanism. Quantum-chemical analysis suggests a mechanism involving a turnstile rotation.  相似文献   

17.
Two structurally different complexes, [Cu2(2-NO2Bz)4(denia)1]n (1) and [Cu(2-NO2Bz)2(denia)2(H2O)2] (2), were prepared from the same reaction (where 2-NO2Bz = 2-nitrobenzoate, denia = N,N-diethylnicotinamide) and they are reported together with [Cu2(2-NO2Bz)4(DMF)2] (3) (DMF = N,N-dimethylformamide). The compounds under study were characterized by elemental analysis, electronic, IR and EPR spectra, magnetic measurements over the temperature range of 1.8–300 K and X-ray analysis. The molecular structure of (1) is polymeric, (2) is monomeric and (3) is dimeric. In the polymeric chain of (1), the denia molecules serve as bridges between dimeric Cu2(2-NO2bz)4 units. Each Cu(II) atom has a square-pyramidal arrangement with different chromophores, Cu1O4O′ and Cu2O4N. The Cu–Cu distances are 2.699(1) Å in the dimeric unit and 7.980(3) Å between the dimeric units. In (2) the Cu(II) atom has a tetragonal-bipyramidal environment CuO2N2O′2. In (3) two Cu(II) atoms are bridged by four carboxylate groups of four 2-NO2bz anions in a synsyn arrangement which create a square base about each Cu(II) atom and an apical position is occupied by the O atom of a DMF molecule (CuO4O′). The Cu–Cu distance of 2.633(1) Å is somewhat shorter than in (1). Spectral and magnetic data of the complexes are discussed with their structures.  相似文献   

18.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

19.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

20.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号