首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neutron diffraction and bulk measurements are used to determine the nature of the low-temperature ordered state in LiCu2O2, a S=1/2 spin-chain compound with competing interactions. The spin structure is found to be helimagnetic, with a propagation vector (0.5,zeta,0), zeta=0.174. The nearest-neighbor exchange constant and frustration ratio are estimated to be J(1)=5.8 meV and J(2)/J(1)=0.29, respectively. For idealized quantum spin chains, these parameter values would signify a gapped spin-liquid ground state with commensurate spin correlations. The observed temperature dependence of the magnetic propagation vector in LiCu2O2 is attributed to a competition between incommensurate helimagnetism in the classical spin model and commensurability in the quantum case. It is also proposed that long-range ordering in LiCu2O2 is facilitated by intrinsic nonstoichiometry.  相似文献   

2.
3.
4.
The results of thermogravimetric, X-ray diffraction, and electrical studies of LiCu2O2 single crystals in the temperature range 300–1100 K are presented. A reversible first-order phase transition between the orthorhombic and tetragonal phases is found to occur in these single crystals at T = 993 K. A pronounced peak on a differential thermal analysis curve and jumps in the unit cell parameters and the electrical resistivity are detected at the phase-transition temperature. The data on the crystal structure of LiCu2O2 and the phase transition-induced change in the entropy determined in this work are used to conclude that the revealed phase transition is caused by the ordering-disordering of Li+ and Cu2+ cations in their structural positions.  相似文献   

5.
We study the structural, magnetic, and resonance properties of LiCu2O2 single crystals grown by the spontaneous crystallization method. The data are interpreted on the assumption that the crystalline structure of the grown single crystals is orthorhombic. Long-range antiferromagnetic order sets in at temperatures below 22.5 K, while above this temperature the dependence of the magnetic susceptibility has a shape characteristic of interacting antiferromagnetic Heisenberg chains. We hypothesize that long-range magnetic order sets in below 22.5 K through the destruction of the ideal ladder structure of LiCu2O2 because of partial redistribution of copper and lithium ions at the crystal lattice sites and because of the presence of other defects in the crystalline structure. Zh. éksp. Teor. Fiz. 113, 1866–1876 (May 1998)  相似文献   

6.
The field dependence of the electron spin resonance in a helimagnet LiCu2O2 was investigated for the first time. In the paramagnetic state, a broad resonance line was observed corresponding to a g factor of 2.3. In the critical regime, around the paramagnetic to helimagnetic phase transition the resonance broadens and shifts to higher frequencies. A narrow signal is recovered at a low temperature, corresponding to a spin gap of 1.4 meV in zero field. A comprehensive model of the magnons is presented, using exchange parameters from neutron scattering [T. Masuda Phys. Rev. B 72, 014405 (2005)10.1103/PhysRevB.72.014405] and the spin anisotropy determined here. The role of the quantum fluctuations is discussed.  相似文献   

7.
A microscopic theory is proposed for coupling of copper spins with an external electric field in the magnetically ordered phase of LiCu2O2. The expressions are derived for the dipole moment components of exchange-coupled pairs of copper spins, as well as expressions for describing the macroscopic polarization in terms of the angles determining spatial orientations of spin rotation planes (helixes) in copper bichains. It is shown that zero electric polarization in isostructural compound NaCu2O2 can be explained by the difference in the spin structures in NaCu2O2 and LiCu2O2.  相似文献   

8.
We show that the joint effect of spin-orbit and magnetic fields leads to a spin polarization perpendicular to the plane of a homogeneous two-dimensional electron system with Rashba spin-orbit coupling and in-plane parallel dc magnetic and electric fields, for angle-dependent impurity scattering or nonparabolic energy spectrum, while only in-plane polarization persists for simplified models. We derive Bloch equations, describing the main features of recent experiments, including the magnetic field dependence of static and dynamic responses.  相似文献   

9.
We report discovery of collinear-magnetism-driven ferroelectricity in the Ising chain magnet Ca3Co2-xMn(x)O6 (x approximately 0.96). Neutron diffraction shows that Co2+ and Mn4+ ions alternating along the chains exhibit an up-up-down-down ( upward arrow upward arrow downward arrow downward arrow) magnetic order. The ferroelectricity results from the inversion symmetry breaking in the upward arrow upward arrow downward arrow downward arrow spin chain with an alternating charge order. Unlike in spiral magnetoelectrics where antisymmetric exchange coupling is active, the symmetry breaking in Ca3(Co,Mn)2O6 occurs through exchange striction associated with symmetric superexchange.  相似文献   

10.
The spin-lattice coupling plays an important role in strongly frustrated magnets. In ZnCr2O4, an excellent realization of the Heisenberg antiferromagnet on the pyrochlore network, a lattice distortion relieves the geometrical frustration through a spin-Peierls-like phase transition at T(c)=12.5 K. Conversely, spin correlations strongly influence the elastic properties of a frustrated magnet. By using infrared spectroscopy and published data on magnetic specific heat, we demonstrate that the frequency of an optical phonon triplet in ZnCr2O4 tracks the nearest-neighbor spin correlations above T(c). The splitting of the phonon triplet below T(c) provides a way to measure the spin-Peierls order parameter.  相似文献   

11.
12.
侯海燕  姚慧  李志坚  聂一行 《物理学报》2018,67(8):86801-086801
研究了基于硅烯的静电势超晶格、铁磁超晶格、反铁磁超晶格中谷极化、自旋极化以及赝自旋极化的输运性质,分析了铁磁交换场、反铁磁交换场以及化学势对输运性质的影响,讨论了电场对谷极化、自旋极化以及赝自旋极化的调控作用.结果表明:当3种超晶格的晶格数达到10以上时,在硅烯超晶格中很容易实现100%的谷极化、自旋极化和赝自旋极化,而且通过调节超晶格上的外加电场可以使极化方向发生翻转,从而在硅烯超晶格中实现外电场对谷自由度、自旋自由度以及赝自旋自由度的操控.  相似文献   

13.
In this study, we investigate the effect of rotation on the masses of scalar and vector mesons in the framework of the 2-flavor Nambu-Jona-Lasinio model. The existence of rotation produces a tedious quark propagator and a corresponding polarization function. By applying the random phase approximation, the meson mass is numerically calculated. It is found that the behavior of scalar and pseudoscalar meson masses under angular velocity ω is similar to that at a finite chemical potential; both rely on the behavior of the constituent quark mass and reflect the property related to chiral symmetry. However, vector meson ρ masses have a more profound relation to rotation. After analytical and numerical calculations, it turns out that at low temperature and small chemical potential, the mass for spin component \begin{document}$ s_z = 0,\pm 1 $\end{document} of a vector meson under rotation exhibits a very simple mass splitting relation \begin{document}$ m_{\rho}^{s_z}(\omega) = m_\rho(\omega = 0)-\omega s_z $\end{document}, similar to the Zeeman splitting of a charged meson under magnetic fields. Furthermore, the mass of the spin component \begin{document}$ s_z = 1 $\end{document} of vector meson ρ decreases linearly with ω and reaches zero at \begin{document}$ \omega_c = m_\rho(\omega = 0) $\end{document}, which indicates that the system will develop \begin{document}$ s_z = 1 $\end{document} vector meson condensation and the system will be spontaneously spin-polarized under rotation.  相似文献   

14.
Based on resonant soft x-ray magnetic scattering, we report that LiCu2O2 exhibits a large interchain coupling which suppresses quantum fluctuations along spin chains, and a quasi-2D short-range magnetic order prevails at temperatures above the magnetic transition. These observations unravel the fact that the ground state of LiCu2O2 possesses long-range 2D-like incommensurate magnetic order rather than being a gapped spin liquid as expected from the nature of quantum spin-1/2 chains. In addition, the spin coupling along the c axis is found to be essential for inducing electric polarization.  相似文献   

15.
We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.  相似文献   

16.
The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.  相似文献   

17.
18.
19.
《Physics letters. A》2002,302(4):211-216
Spin-resolved inverse photoemission investigations show that the native Cr2O3 surface is antiferromagnetically coupled to the CrO2 thin film substrate, with a temperature dependent induced polarization. The Cr2O3 exhibits the characteristic behavior of a rigid band/spin mixing behavior (non-Stoner) of a local moment paramagnet. The strong shifts of the conduction band edge from room temperature to low temperature suggests that the extent of the induced polarization of the Cr2O3 oxide surface, by the CrO2 substrate, may be partly related to Coulomb blockade effects identified in CrO2/Cr2O3/CrO2 junctions.  相似文献   

20.
Anomalous polarization characteristics of magnetic resonance in CuGeO3 doped with 2% Co impurity are reported. For the Faraday geometry, this mode is damped for the microwave field B ω aligned along a certain crystallographic direction, showing that the character of magnetic oscillation differs from the standard spin precession. The observed resonance coexists with the ESR on Cu2+ chains; it is argued not to be caused by “impurity” EPR, as previously claimed, but to correspond to a previously unknown collective mode of magnetic oscillations in an S = 1/2 AF quantum spin chain. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号