首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Gu Xu 《Solid State Ionics》1992,50(3-4):345-347
The “vehicular effects” of chain segment motion on ionic diffusion in solid polymer electrolytes have been investigated via numerical simulation on a two-dimensional square lattice where the dynamical variation of chain configuration is presented by translational or rotational bond movement. It is found that (a) both types of bond motion promote continuous diffusion when the fraction (p) of available bonds is below the static percolation threshold of p=0.5 in two dimensions; (b) translational motion of bonds parallel to the direction of diffusion produces larger diffusion coefficients (D) than that by random renewal of the dynamic bond percolation model (DBPM), while the perpendicular motion or rotational motion gives smaller values of D; (c) Smooth lines instead of “stair-case like” curves generated by DBPM are obtained in the mean-squared displacement versus time plot, when bonds are shifting along the diffusion route. The dependence of diffusion coefficients on the variation of motion patterns of bonds is expected to be related to the temperature change under which these patterns are excited accordingly, such that VTF behavior of certain polymer electrolytes may be deduced.  相似文献   

3.
We have studied the high-frequency (34 GHz) mobility of positive charge carriers on isolated ladder-type polymer chains in dilute solution. We find that the high-frequency mobility is limited by the chain ends on chains as long as 35 monomers. The intrachain motion of charge carriers can be described by one-dimensional diffusion between infinitely high reflecting barriers, representing the chain ends. Our data indicate that the intrachain mobility for ladder-type polymer chains is close to 600 cm(2)/V s. With this high mobility the ladder-type polymer is a promising candidate for future use as an interconnecting wire in molecular electronics.  相似文献   

4.
Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polymer, namely, localized and mobile polarons with the concentration ratio and susceptibility depending on the irradiation dose and temperature. Superslow torsion motion of the polymer chains was studied by the saturation transfer method at D-band EPR. Additional information on the polymer chain segment dynamics was obtained by the spin probe method at X-band EPR. Spin-spin and spin-lattice relaxation times were measured separately by the steady-state saturation method at D-band EPR. Intrachain and interchain spin diffusion coefficients and conductivity arising from the polaron dynamics were calculated. It was shown that the polaron dynamics in laser-modified polymer is affected by the spin-spin interaction. The interchain charge transfer is stimulated by torsion motion of the polymer chains, whereas the total conductivity of irradiated PATAC is determined mainly by the dynamic of diamagnetic charge carriers. Magnetic, relaxation and dynamics parameters of PATAC were also shown to change during polymer storage.  相似文献   

5.
This paper investigates the use of a high-speed computer to simulate the unwinding of DNA. A Langevin equation of motion for the well-known bead-spring statistical macromolecule is written in difference form. An appropriate set of boundary conditions is developed to simulate a helical molecule and the resulting set of rules for the motion of the chain elements is used to produce the strand unwinding. The unwinding appears to proceed via initial end-unwinding followed by progressive unwinding inward. The latter process appears to occur by diffusion of twist outward from the central portion of the macromolecule. A computer simulation, using the Langevin equation, of linear tensile relaxation is compared with the appropriate analytical solution via the Rouse treatment of polymer dynamics, good agreement being obtained. The helical results are compared both with tensile relaxation and with Crothers' (1964) analytical treatment of the unwinding problem, which is analogous to the well-known temperature diffusion problem. The tensile results and Crothers' results are identical in form, and agree quantitatively remarkably closely with the computer-simulated helical unwinding, although the helical unwinding is somewhat slower.Financial support for E.M.S. from the National Institutes of Health is acknowledged. We are also indebted to the National Institutes of Health for grant GM-11916, which supported the cost of the calculations.  相似文献   

6.
针对尚未解决的受阻酚结构变化与杂化体系阻尼机理间关系的问题,本文采用分子动力学模拟方法构建了三种受阻程度不同的受阻酚/聚合物杂化体系,从理论上探讨了位阻效应对阻尼机理的影响.对体系氢键相互作用、结合能、相对自由体积及扩散系数进行模拟分析表明,位阻效应对受阻酚分子内氢键相互作用有显著的弱化效果,可减少小分子团聚倾向,有利于小分子与聚合物分子间氢键相互作用的形成.但是,过高的位阻对小分子运动有阻碍作用,不利于小分子与聚合物形成强烈的氢键键合,也即不利于杂化体系阻尼性能的提高.因此,如何选择受阻程度适中的受阻酚是制备高阻尼杂化材料的一关键要素.  相似文献   

7.
The diffusion properties of small clusters Agn, Cun, and Aun on the Cu(111) and Au(111) surfaces were studied using the molecular statics (MS) in order to understand the atomistic processes underlying the motion. In this work, the atomic interaction potential is modeled by a semi-empirical Embedded Atom Method (EAM), while the drag method is used to determine the static activation energy for each diffusion path. The presented results indicate that the dimer can diffuse on the (111) surface via the zig-zag and concerted motion mechanisms. The trimer diffuses according to the concerted motion mechanism. For the tetramer diffusion, the mechanism that consumes the least amount of energy is the zig-zag motion, in which only two atoms are needed for the diffusion process at one time. This allows finding a static activation energy smaller compared to the trimer diffusion.  相似文献   

8.
The solubility limit and diffusion coefficient of I2 in (CH)x polymer have been measured with a radiotracer technique. The concentration of iodine in the polymer is a function of the surrounding concentration outside the film at equilibrium (free enthalpy of solubility = ? 0.20 eV). The data are consistent with the following mechanism: liquid state diffusion of the solution in between the fibrils and solid state diffusion of iodine inside the fibrils. The macroscopic diffusion coefficient throughout the film is equal to 10?9cm2sec?1. These results restrict the present (CH)x polymer to heterolithic device applications after encapsulation. Monolithic substrate application will require a further inhibition of diffusion.  相似文献   

9.
2,2,6,6-tetramethylpiperidine-l-oxyl-4-carboxylic acid (TOAC) spin-labelled analogues of the Aib-rich peptide (peptaibol) Trichogin GA IV are investigated in a glassy methanol/glycerol (70/30 v/v%) system, using conventional CW EPR and electron spin echo spectroscopy. Echo-detected (ED) EPR spectra indicate that the labels undergo restricted orientational motion (libration). Comparison with the small molecular spin probe Tempone shows that the dynamics of peptide molecules is determined by their structure and not by the surrounding medium. At the terminal positions (position 1 and 8) TOAC residues were found to be more flexible than at the central 4th position. Instantaneous diffusion mechanism in electron spin echo, which also contributes to the ED EPR spectra, was employed for deriving the local concentration of peptaibols. This approach may serve as a tool for investigation of peptide aggregation. In the studied model glassy solution the peptaibols were found to be randomly distributed.  相似文献   

10.
Li Y  Li Y  Xu SN  Li K  Lu YQ 《光谱学与光谱分析》2011,31(4):1069-1073
实验中选取了带有正电罗丹明6G分子、带有负电荷荧光素分子、中性的尼罗红分子和生物分子R-藻红蛋白为模型分子.将这几种分子分别包封于海藻酸钙窄心胶囊中.实验表明囊芯分子的电性对其在海藻酸钙空心胶囊中缓释性能有影响,带有正电荷罗丹明6G分子的扩散过程中,多孔聚合物骨架扩散是主要过程.中性分子则表现出来一个膜相溶出和多孔聚合物骨架扩散共同控制的过程.带有负电荷荧光素分子,由于静电排斥作用,加剧囊芯分子的运动.从而使得荧光素分子可以直接从膜相溶出.此外.南于胶囊囊壁上带有负电,不论是带有正电荷还足带有负电荷的分子都会延长其达到扩散平衡的时间.而电中性分子由于没有库仑相互作用的影响更容易达到平衡.囊芯和囊辟相互作用强的其扩散系数小,反之其扩散系数大.R-藻红蛋白的扩散完全是一个多孔聚合物骨架扩散控制的过程.由于分子的体积比较大,因此扩散的平衡时间也比较长.  相似文献   

11.
We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork that are such that the meshwork's energy is a function F(el)[A(xi)] not of the real microscopic membrane area A, but of a smoothed membrane's area A(xi), which corresponds to the area of the membrane coarse grained at the mesh size xi. We show that the meshwork modifies the membrane tension sigma both below and above the scale xi, inducing a steep crossover of amplitude deltasigma=dF(el)/dA(xi). The predictions of our model account for the fluctuation spectrum of red blood cell membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane areas. We also predict an observable tension jump for membranes decorated with polymer "brushes."  相似文献   

12.
High-field EPR on nitroxide spin probes is applied to characterize the dynamics of small additive molecules and surfactants in polymer films obtained from colloidal dispersions. Due to the increased width of the spectra and the smaller influence of hyperfine-dependent relaxation on the spectral lineshape at W band (94 GHz) compared to X band (9.6 GHz), it is possible to measure subnanosecond rotational correlation times for the isotropic motion of the unpolar spin probe TEMPO in the free volume of poly(acrylate) films. Likewise, the anisotropies of the rotational diffusion tensors of a surfactant and a small ionic additive molecule in poly(fluoroacrylate) films can be determined with better confidence at W band. From these anisotropies it is concluded that the surfactant aggregates exhibit low molecular order, whereas the ionic additives are strongly attached to immobilized ionic clusters. High-field EPR lineshapes at W band are also found to be more sensitive to slow motions on a microsecond time scale than X-band EPR lineshapes. The design of a Fabry-Pérot resonator for measurements on polymer films is discussed and its sensitivity is demonstrated on a wet polymer film with a thickness of 160 μm.  相似文献   

13.
Polyelectrolyte multilayers prepared by the layer-by-layer technique provide an efficient way to generate planar structures of tailored surface charge and hydrophobicity, which are used as membranes for pervaporation. The use of polyelectrolyte multilayers to form the membrane permits tailoring the surface charge of the membrane and, thus, selectivity; at the same time, it reduces fouling of the membrane by adsorption of organic matter. Pulsed field gradient (PFG) nuclear magnetic resonance has been used to investigate the diffusion of probe molecules into polymer systems. Evaluation of the apparent diffusion coefficient in porous poly(amide) results in a pore size of 4 microm, as found in electron micrographs. For the pore size obtained for polyelectrolyte multilayers, no equivalent pores could be found in microscopy. Propagators for the diffusion of propanol and propanol-water mixture into multilayers reveal that there might be selective interaction of probe molecules with the polyelectrolyte system.  相似文献   

14.
15.
Monte Carlo simulations of chain conformations and the diffusion equation were used to analyze the fluorescence kinetics of short polymer chains labeled with a probe and a quencher at opposite ends. In simulations, three chain models were considered: an ideal chain (without volume interactions); a self-avoiding chain taking into account the exclusive volume effect; and a self-avoiding chain with limited flexibility between nearest segments. For each model, end-to-end distance distribution functions were obtained, which were different from Gaussian ones. The distribution functions were used in a diffusion equation to simulate the fluorescence kinetics of the probe affected by intramolecular end-to-end collisions of short chains. The kinetics has been numerically calculated for a representative experimental system in a nonviscous solution. The simulated time-resolved fluorescence decays were monoexponential except at very short times (<2 ns). Diffusion coefficients were calculated for different chain models and different chain lengths. The experimental data could be reproduced by assuming systematically smaller end-to-end diffusion coefficients for the shorter chains.  相似文献   

16.
The noise power spectrum of the thermally activated motion of an AFM cantilever has been analyzed with respect to viscoelastic and hydrodynamic coupling between the cantilever and a substrate surface. Spheres with radii between 5 and 25 microm were glued to the cantilever to provide a well-defined geometry. The cantilever is modeled as a harmonic resonator with a frequency-dependent complex drag coefficient xi(omega). The variation of the drag coefficient xi(omega) with the tip-sample distance, D, and the sphere radius, R, can be expressed as a function of the single dimensionless parameter D/ R. However, this scaling breaks down close to the surface. There are two sources of a frequency dependence of xi(omega), which are viscoelastic memory and hydrodynamics. Viscoelastic relaxation is observed when the surface is covered with a soft polymer layer. In the absence of such a soft layer one still finds a frequency dependence of xi(omega) which is caused by hydrodynamics. At large substrate-cantilever distances, the drag coefficient increases with frequency because of inertial effects. At small distances, on the other hand, the drag coefficient decreases with increasing frequency, which is explained by the reflection of shear waves from the substrate surface. In liquids, inertial effects can be important when performing dynamic AFM experiments.  相似文献   

17.
The specific features of the postexposure evolution of photoinduced (holographic) gratings in a model medium that consists of poly(methyl methacrylate) with distributed phenanthrenequinone and is characterized by a diffusion enhancement are investigated using the holographic relaxation technique. It is established that the evolution process occurs in four stages controlled by different mechanisms: (i) initial nonmonotonic changes governed by the diffusion of an intermediate radical photoreaction product and its transformation into a stable product due to attachment to the macromolecules, (ii) hologram enhancement through the diffusion of phenanthrenequinone molecules, (iii) rapid partial degradation associated with the spatially confined motion of polymer chain segments, and (iv) slow degradation as a result of macromolecular diffusion. In the course of polymer relaxation after a temperature jump, the processes associated with the mobility of molecules are retarded and the depth of rapid degradation decreases. The effective diffusion coefficient characterizing the destruction of reflection gratings is smaller than that for transmission gratings. This can be explained by the spatial inhomogeneity of the polymer.  相似文献   

18.
Time-resolved fluorescence polarization (anisotropy) of a probe (guest molecule) in a micelle is used for testing different models of molecular dynamics. The experimental studies so far support the model that includes wobbling motion and translational diffusion for the guest molecule in the micelle.  相似文献   

19.
We present computer simulations for the static and dynamic behavior of a fluid near its consolute critical point. We study the Widom-Rowlinson mixture, which is a two component fluid where like species do not interact and unlike species interact via a hard core repulsion. At high enough densities this fluid exhibits a second order demixing transition that is in the Ising universality class. We find that the mutual diffusion coefficient DAB vanishes as DAB approximately xi(-1.26 +/- 0.08), where xi is the correlation length. This is different from renormalization-group and mode coupling theory predictions for model H, which are DAB approximately xi(-1.065) and DAB approximately xi(-1), respectively.  相似文献   

20.
李丽丽  张晓虹  王玉龙  国家辉 《物理学报》2017,66(8):87201-087201
模拟分子的结构和行为有助于更深刻地分析空间电荷陷阱性能变化的微观机理.利用Materials studio软件建立聚乙烯模型,通过分子链段运动产生的能量和自由体积变化对微观结构和电荷陷阱进行分析.结果表明:温度由298 K逐渐升高至363 K的过程中,聚合物分子热运动加剧导致的滑移扩散现象,使自由体积和陷阱能级在363 K处分别出现1542.07 ~3和0.66 eV的最大值和最小值.然而在Z轴方向施加0.0007 Hartree/Bohr(1 Hartree/Bohr=5.2×10~(11)V/m)电场作用时,由于电致伸缩产生Maxwell应力,使分子链段出现局部有序排列,增大范德瓦耳斯能至-360.18 kcal/mol(1 kcal/mol=4.18 kJ/mol),而自由体积降低了279.77 ~3,导致陷阱能级减小0.45 eV.当363 K和0.0007 Hartree/Bohr联合作用时,聚乙烯的陷阱能级相比同温无电场作用降低0.17 eV.分子模拟结果与实测结果相符.利用分子热运动和电致伸缩效应,初步探讨了材料自由体积和范德瓦耳斯相互作用能变化的微观机理,证实分子链段运动改变了微观结构,从而影响电荷陷阱特性.并且与温度相比,电场作用会使材料产生更低能级的空间电荷陷阱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号