首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We predict the robust existence of a novel quantum orbital stripe order in the p-band Bose-Hubbard model of two-dimensional triangular optical lattices with cold bosonic atoms. An orbital angular momentum moment is formed on each site exhibiting a stripe order both in the superfluid and Mott-insulating phases. The stripe order spontaneously breaks time-reversal, lattice translation, and rotation symmetries. In addition, it induces staggered plaquette bond currents in the superfluid phase. Possible signatures of this stripe order in the time of flight experiment are discussed.  相似文献   

2.
When a Bose-Einstein condensate is set to rotate,superfluid vortices will be formed,which finally condense into a vortex lattice as the rotation frequency further increases.We show that the dipole-dipole interactions renormalize the short-range interaction strength and result in a distinction between interactions of parallel-polarized atoms and interactions of antiparallel-polarized atoms.This effect may lead to a spontaneous breakdown of the rapidly rotating Bose condensate into a novel anti-ferromagnetic-like vortex lattice.The upward-polarized Bose condensate forms a vortex lattice,which is staggered against a downward-polarized vortex lattice.A phase diagram related to the coupling strength is obtained.  相似文献   

3.
We study bosonic atoms near a Feshbach resonance and predict that, in addition to standard normal and atomic superfluid phases, this system generically exhibits a distinct phase of matter: a molecular superfluid, where molecules are superfluid while atoms are not. We explore zero- and finite-temperature properties of the molecular superfluid (a bosonic, strong-coupling analog of a BCS superconductor), and study quantum and classical phase transitions between the normal, molecular superfluid, and atomic superfluid states.  相似文献   

4.
范二女  张万舟 《中国物理 B》2017,26(4):43701-043701
The Bose-Hubbard model with an effective off-site three-body tunneling,characterized by jumps towards one another,between one atom on a site and a pair atoms on the neighborhood site,is studied systematically on a one-dimensional(1D) lattice,by using the density matrix renormalization group method.The off-site trimer superfluid,condensing at momentum k = 0,emerges in the softcore Bose-Hubbard model but it disappears in the hardcore Bose-Hubbard model.Our results numerically verify that the off-site trimer superfluid phase derived in the momentum space from[Phys.Rev.A81,011601(R)(2010)]is stable in the thermodynamic limit.The off-site trimer superfluid phase,the partially off-site trimer superfluid phase and the Mott insulator phase are found,as well as interesting phase transitions,such as the continuous or first-order phase transition from the trimer superfluid phase to the Mott insulator phase.Our results are helpful in realizing this novel off-site trimer superfluid phase by cold atom experiments.  相似文献   

5.
The spectroscopic study ions and atoms immersed into liquid helium can contribute to the understanding of the structure of pointlike defects in helium and their interaction with the superfluid phase as well. Ions and atoms serve as microprobes in the form of so calledbubble orsnowball type defects in the quantum fluid. The optical emission of these structures is recorded. From the optical spectra of previous experiments the influence of the surrounding helium on the electronic configuration of the impurity atoms or ions was examined. In this experiment the light emitted from the defect atoms is observed by a camera. The pictures obtained yield information about the distribution and the motion of the defect particles in the superfluid. As an example the fluorescence light resulting from the recombination of magnesium, barium and thallium ions with excess electrons in superfluid helium was recorded.  相似文献   

6.
We study the zero temperature phase diagram of hard-core bosons in two dimensions subjected to three types of background potentials: staggered, uniform, and random. In all three cases there is a quantum phase transition from a superfluid (at small potential) to a normal phase (at large potential), but with different universality classes. As expected, the staggered case belongs to the XY universality, while the uniform potential induces a mean field transition. The disorder driven transition is clearly different from both; in particular, we find z approximately 1.4, nu approximately 1, and beta approximately 0.6.  相似文献   

7.
We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR). The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground state.  相似文献   

8.
拓扑超流态是一种奇异物质态,它的内部受能隙保护,而在其系统边缘却可以容纳无能隙的Majorana 费米子。由于该粒子满足非阿贝尔统计,并且受拓扑保护具有良好的稳定性,用它 们携带量子化的信息,可以用于拓扑量子计算的研究。近年来,理论工作预测了各类系统中可能 存在的拓扑超流态。我们首先介绍了在各类光晶格模型中的拓扑超流, 光晶格的超冷原子具有良 好的可控性与普适性,是实现拓扑超流的理想模型系统。接下来我们介绍了自旋轨道耦合调控下 的拓扑超流,自旋轨道耦合效应是诱导拓扑相的重要条件,并且人们已经在实验上合成了人工自 旋轨道耦合,这为实验上观测拓扑超流取得了突破性的进展。随着近年来实验技术的提高,曾经 难以在实验中观测的,被人们所忽略的拓扑Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) 超流相也 成为了人们研究的热点,因此我们接下来介绍了拓扑的FFLO 超流。此外,我们还介绍了拓扑超 流其他方面的进展,包括孤子引诱的拓扑超流、三组分的拓扑超流、大陈数的拓扑超流以及拓扑 超流临界温度的提高。在实验中,如何检测与实现拓扑超流,是其研究的目的及意义所在,因 此我们在文章的最后介绍了拓扑超流的识别与实现。  相似文献   

9.
超流费米气体相滑移时的密度分布   总被引:1,自引:0,他引:1       下载免费PDF全文
武宏宇  尹澜 《物理学报》2006,55(2):490-493
当前在冷原子和玻色爱因斯坦凝聚(BEC)领域的一个重要问题是在Feshbach共振附近的冷费米气体如何从BEC态演变到BCS(Bardeen Schrieffer Cooper)态.本文进一步研究在Feshbach共振附近超流态的相滑移现象.通过具体的数值计算,给出了费米气体在相滑移时的粒子数密度的分布,并对不同温度下的相滑移的大小进行了分析.结果表明,相滑移现象可以作为实验上判断系统是否处于超流态的一个可行的判据. 关键词: 超流费米气体 相滑移 Feshbach共振  相似文献   

10.
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.  相似文献   

11.
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.  相似文献   

12.
We realize a single-band 2D Bose-Hubbard system with Rb atoms in an optical lattice and measure the condensate fraction as a function of lattice depth, crossing from the superfluid to the Mott-insulating phase. We quantitatively identify the location of the superfluid to normal transition by observing when the condensed fraction vanishes. Our measurement agrees with recent quantum Monte Carlo calculations for a finite-sized 2D system to within experimental uncertainty.  相似文献   

13.
We investigate tunneling and self-trapping of superfluid Fermi gases under a two-mode ansatz in different regimes of the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluid to Bose-Einstein condensates (BEC). Starting from a generalized equation of state, we derive the coupled equations of relative atom-pair number and relative phase about superfluid Fermi gases in a double-well system and then classify the different oscillation behaviors by the
tunneling strength and interactions between atoms. Tunneling and self-trapping behaviors are considered in the whole BCS-BEC crossover in the case of a symmetric double-well potential. We show that the nonlinear interaction between atoms makes the self-trapping more easily realized in BCS regime than in the BEC regime and stability analysis is also given.  相似文献   

14.
K. Ziegler 《Laser Physics》2006,16(4):699-706
A mixture of light and heavy fermionic atoms in an optical lattice is considered. Tunneling of the heavy atoms is neglected such that they are only subject to thermal fluctuations. There is a complex interplay between light and heavy atoms which results in an Ising-like distribution of heavy atoms with a first-order transition from homogeneous to staggered order. A second-order transition is possible between an ordered and a disordered phase of heavy atoms. Depending on the phase of heavy atoms, light atoms are scattered around and can propagate, diffuse, and localize. Due to correlations in the disordered phase of heavy atoms, there can be a gap in the spectrum of light atoms, leading to a Mottlike incompressible state.  相似文献   

15.
Fermionic atoms confined in a potential created by standing wave light can undergo a phase transition to a superfluid state at a dramatically increased transition temperature. Depending upon carefully controlled parameters, a transition to a superfluid state of Cooper pairs, antiferromagnetic states or d-wave pairing states can be induced and probed under realistic experimental conditions. We describe an atomic physics experiment that can provide critical insight into the origin of high-temperature superconductivity in cuprates.  相似文献   

16.
We study thermodynamics of strongly coupled lattice QCD with two colors of staggered fermions in 2+1 dimensions. The partition function of this model can be written elegantly as a statistical mechanics of dimers and baryon loops. The model is invariant under an SO(3) x U(1) symmetry. At low temperatures, we find evidence for superfluidity in the U(1) symmetry sector while the SO(3) symmetry remains unbroken. The finite temperature phase transition appears to belong to the Kosterlitz-Thouless universality class, but the superfluid density jump rho(s) (T(c)) at the critical temperature T(c) is anomalously higher than the normal value of 2T(c)/pi. We show that, by adding a small SO(3) symmetry breaking term to the model, the superfluid density jump returns to its normal value, implying that the extra symmetry causes anomalous superfluid behavior. Our results may be of interest to researchers studying superfluidity in spin-1 systems.  相似文献   

17.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   

18.
The superfluid-Mott insulator phase transition in a Bose-Einstein condensate of neutral atoms with doubly degenerate internal ground states in an optical lattice is theoretically investigated. The optical lattice is created by two counterpropagating linearly polarized laser beams with the angle theta between the polarization vectors (lin-angle-lin configuration). The phase diagram of the system and the critical values of the parameters are worked out. It is shown that the sign of the detuning plays an important role and that there is a strong suppression of the Mott transition in the case of blue detuning. Varying the laser intensity and/or the angle theta one can manipulate the Mott insulator to superfluid quantum phase transition as well as prepare the condensate in physically distinguishable "ferromagnetic" and "antiferromagnetic" superfluid states.  相似文献   

19.
In this paper, a topological superfluid phase with Chern number ?? = ±1, possessing gapless edge states and non-Abelian anyonsis designed in a ?? = ±1 topological insulator proximity to ans-wave superfluid on an optical lattice with the effective gauge fieldand layer-dependent Zeeman field coupled to ultracold fermionic atoms’ pseudo spin. Wealso study its topological properties and calculate the phase stiffness by using therandom-phase-approximation approach. Finally we derive the temperature of theKosterlitz-Thouless transition by means of renormalized group theory. Owning to theexistence of non-Abelian anyons, this ?? = ±1 topological superfluid may be a possible candidate fortopological quantum computation.  相似文献   

20.
The interplay of the staggered and the three-body interaction potentials on the quantum phases of a spin-1 Bose Hubbard model using a mean field approximation (MFA) is studied. In the antiferromagnetic (AF) case, a smaller value of the staggered potential (SP) results in the charge and the spin density wave ordering along with the Mott insulator (MI) and the staggered superfluid (SSF) phases. While the competition between two types of the potential leads to the stabilization of the higher order MI and charge density wave (CDW) phases with increasing three-body interaction strength. Further, the spin eigenvalue and nematic order parameters are calculated to scrutinize the spin singlet-nematic formation in the MI and the CDW phases and spin population fractions to analyze the nature of the SSF phase. A signature of the spin density wave (SDW) pattern is also observed in the gapped phase lobes. In case of a purely three-body interaction, the third and higher order insulating lobes become dominant with increasing staggered potential strength. Subsequently, all MFA phase diagrams are then nicely corroborated with the analytical results obtained using a perturbative expansion corresponding to the AF and ferromagnetic cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号