首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By virtue of a superconducting charge qubit, we derive the off-diagonal matrix operator and investigate the decoherence of the system in different regimes coupled to, respectively, the boson bath and the spin bath. It is found that the two different baths make a bit of difference on the decay of the system at low but finite temperature and the decoherence of the system is most closely linked with the regime as well as the coupling strength. Therefore, by optimizing some reasonable parameters, we can suppress appropriately the decoherence of a given quantum system.  相似文献   

2.
We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.  相似文献   

3.
Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times T2 have been measured in isotope-enriched silicon but come far short of the T2=2T1 limit. The effect of nuclear spins on T2 is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, 29Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.  相似文献   

4.
Decoherence of quantum objects in noisy environments is important in quantum sciences and technologies. It is generally believed that different processes coupled to the same noise source have similar decoherence behaviors and stronger noises cause faster decoherence. Here we show that in a quantum bath, the case can be the opposite. We predict that the multitransition of a nitrogen-vacancy center spin-1 in diamond can have longer coherence time than the single transitions, even though the former suffers twice stronger noises from the nuclear spin bath than the latter. This anomalous decoherence effect is due to manipulation of the bath evolution via flips of the center spin.  相似文献   

5.
The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a non-zero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that at a non-zero temperature, the quantum coherence decays much faster than at zero temperature. Moreover, the non-zero temperature thermal bath will bring a crucial suppression to the quantum effects of the observables, which causes these quantum effects to become unable to persist up to the Ehrenfest time but is insufficient to destroy the quantum-classical transition.  相似文献   

6.
I show that the decoherence in a system of degenerate two-level atoms interacting with a bosonic heat bath is for any number of atoms governed by a generalized Hamming distance (called "decoherence metric") between the superposed quantum states, with a time-dependent metric tensor that is specific for the heat bath. The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the overall decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with blackbody radiation.  相似文献   

7.
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.  相似文献   

8.
It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered ``always-on interaction". In this paper, we study a more realistic problem for such a quantum state transfer (QST) protocol, how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment. Here, the environment is universally modeled as a bath of fermions located in different positions. By making use of the irreducible tensor method in angular momentum theory, we investigate the effect of environment on the efficiency of QST for both cases at zero and finite temperatures. We not onlyshow the generic exponential decay of QST efficiency as the number of sites increase, but also find some counterintuitive effect, the QST can be enhanced as temperature increases in some cases.  相似文献   

9.
10.
In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time and show that it has the same scale as the time after which thermal fluctuations become comparable with quantum fluctuations. The text was submitted by the author in English.  相似文献   

11.
Within the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time scale and analyze the transition from quantum to classical behavior of the considered system. The text was submitted by the author in English.  相似文献   

12.
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analysed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.  相似文献   

13.

We investigate the dynamics and protection of quantum entanglement of a qutrit-qutrit system under local amplitude damping channels with finite temperature. We consider two different initial states. We find that the qutrit-qutrit entanglement decays monotonically as the decoherence strength increases, and may go through entanglement sudden death at higher temperature. Special attention is paid to how to protect the quantum entanglement from decoherence by weak measurement and quantum measurement reversal. Our results show that the entanglement increases with the increase of weak measurement strength when the temperature is lower. However, the protections of entanglement by weak measurement and quantum measurement reversal are almost failed and the decays of entanglement goes up with the increase of weak measurement strength for different decoherence strength when the temperature is higher, even entanglement suffers sudden death.

  相似文献   

14.
In this work, we consider decoherence of a central spin by a spin bath. In order to study the nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling the spin-bath decoherence, based on the representation of the central spin density matrix. The method can be applied to longitudinal and transverse relaxation at different external fields. In particular, by modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the slow long-time decoherence of the central spin.  相似文献   

15.
The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with the results for a classical noise source such as generated by a telegraph process, enables us to set limits on the applicability of this process vis à vis its quantum counterpart, as well as lend handle on the parameters that can be tuned for analysing decoherence. Both Ohmic and non-Ohmic dissipations are treated and appropriate limits are analysed for facilitating comparison with the telegraph process.  相似文献   

16.
This paper considers a generalized spin star system which can be solved exactly, with the central spin-1/2 system embedded in an outer ring of N spin-1/2 particles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model.  相似文献   

17.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

18.
We demonstrate that electron-phonon interaction in quantum dots embedded in one-dimensional systems leads to pronounced, non-Markovian decoherence of optical transitions. The experiments that we present focus on the line shape of photoluminescence from low-temperature axially localized carbon nanotube excitons. The independent boson model that we use to model the phonon interactions reproduces with very high accuracy the broad and asymmetric emission lines and the weak red-detuned radial breathing mode replicas observed in the experiments. The intrinsic phonon-induced pure dephasing of the zero-phonon line is 2 orders of magnitude larger than the lifetime broadening and is a hallmark of the reduced dimensionality of the phonon bath. The non-Markovian nature of this decoherence mechanism may have adverse consequences for applications of one-dimensional systems in quantum information processing.  相似文献   

19.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

20.
苏杰  王继锁  张晓燕  梁宝龙 《中国物理 B》2010,19(5):57301-057301
For a mesoscopic radio frequency superconducting quantum interference device (rfSQUID), at a degeneracy point, the system reduces to a quantum two-state system which can be used as a flux qubit. When the noise environment is equivalent to a harmonic oscillators bath, by virtue of an operator-norm measure for the short time decoherence, this paper investigates the initial decoherence of the flux qubit operating in the ohmic noise environment and illustrates its property by means of the numerical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号