首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An atmospheric pressure chemical vapor infiltration (CVI) process without metallic catalysts was applied for the growth of SiC nanowires within stacked SiC fiber fabrics. We investigated the effect of the concentration of a reactant gas (CH3SiCl3, MTS) on the growth behavior and microstructure of the SiC nanowires. At high concentration of MTS in a H2+MTS mixture gas, one-dimensional (1D) SiC deposits with diameters of several hundreds of nanometers were formed. Microstructures of the 1D SiC deposits exhibited a strong positional dependency throughout the thickness direction of the stacked fabric due to a depletion of the MTS gas. On the other hand, single-crystalline SiC nanowires with average diameters of 50–60 nm could be obtained at a low concentration of MTS. The SiC nanowires also exhibited a homogeneous growth both in the plane of each fabric layer and throughout the thickness of the sample.  相似文献   

2.
A total pressure‐controlled physical vapor transport growth method that stabilizes SiC polytype is proposed. The supersaturation of carbon during SiC growth changed as a function of the growth time due to changes in the temperature difference between the surfaces of the source and the grown crystal. Supersaturation also varied as a function of the pressure inside the furnace. Therefore, modification of the pressure as a function of growth time allowed for constant supersaturation during growth. The supersaturation was calculated based on classical thermodynamic nucleation theory using data for heat and species of Si2C and SiC2 transfer in a furnace obtained from a global model. Based on this analysis, a method for polytype‐stabilized SiC growth was proposed that involves decreasing the pressure as a function of growth time. The 4H‐SiC prepared using this pressure‐controlled method was more stable than that of 4H‐SiC formed using the conventional constant‐pressure method.  相似文献   

3.
After a brief overview of different epitaxial layer growth techniques, the homoepitaxial chemical vapour deposition (CVD) of SiC with a focus on hot-wall CVD is reviewed. Step-controlled epitaxy and site competition epitaxy have been utilized to grow polytype stable layers more than 50 μm in thickness and of high purity and crystalline perfection for power devices. The influence of growth parameters including gas flow, C/Si ratio, growth temperature and pressure on growth rate and layer uniformity in thickness and doping are discussed. Background doping levels as low as 1014 cm−3 have been achieved as well as layers doped over a wide n-type (nitrogen) and p-type (aluminium) range.

Furthermore the status of numerical process simulation is mentioned and SiC substrate preparation is described. In order to get flat and damage free epi-ready surfaces, they are prepared by different methods and characterised by atomic force microscopy and by scanning electron microscope using channelling patterns. For the investigation of defects in SiC high purity CVD layers are grown. The improvement of the quality of bulk crystal substrates by micropipe healing and so-called dislocation stop layers can further decrease the defect density and thus increase the yield and performance of devices. Due to its high growth rate functionality and scope for the use of multi-wafer equipment hot-wall CVD has become a well-established method in SiC-technology and has therefore great industrial potential.  相似文献   


4.
The growth of highly oriented 3C–SiC directly on an oxide release layer, composed of a 20-nm-thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (1 1 1)Si substrate, was investigated as an alternative to using silicon-on-insulator (SOI) substrates for freestanding SiC films for MEMS applications. The resulting SiC film was characterized by X-ray diffraction (XRD) with the X-ray rocking curve of the (1 1 1) diffraction peak displaying a FWHM of 0.115° (414″), which was better than that for 3C–SiC films grown directly on (1 1 1)Si during the same deposition process. However, the XRD peak amplitude for the 3C–SiC film on the poly-Si seed layer was much less than for the (1 1 1)Si control substrate, due to slight in-plane misorientations in the film. Surprisingly, the film was solely composed of (1 1 1) 3C–SiC grains and possessed no 3C–SiC grains oriented along the 3 1 1 and 1 1 0 directions which were the original directions of the poly-Si seed layer. With this new process, MEMS structures such as cantilevers and membranes can be easily released leaving behind high-quality 3C–SiC structures.  相似文献   

5.
In this paper numerical results on the impurity segregation in directional solidified multi-crystalline silicon are presented and compared with experimental results. A solute transport model has been established to predict the final segregation pattern of impurities in the ingot. The segregation is analyzed experimentally on the basis of Fourier transform infrared (FTIR) spectroscopy and glow-discharge mass spectrometry (GDMS). Precipitates were located by IR-transmission microscopy (IRM). Qualitative agreement between simulation and experiment is found. It is demonstrated how the flow pattern can influence the final solute distribution. The simulation also shows that the solubility limit of carbon and nitrogen is reached locally in the ingot and SiC and Si3N4 precipitates are likely to form.  相似文献   

6.
Silicon carbide (SiC) nanowires were prepared by the gas pressure annealing of SiBONC powders, which were synthesized by pyrolysis of a polymeric precursor. The yield, morphology and composition of the nanowires were influenced by the Si/B ratio in the original ceramic powders, annealing temperature and atmosphere. Annealing temperatures between 1500 and 1600 °C and Si/B molar ratios between 70:30 to 60:40 were suitable for growth of the nanowires. When annealing in an argon (Ar) atmosphere, the SiC nanowires contained little oxygen (O); and the diameters ranged from 20 to 200 nm. Then annealing in a nitrogen (N2) atmosphere, the nanowires were thicker and rougher, and consisted of a relatively high level of nitrogen. Varied shapes and morphologies of the nanowires were observed for different synthesis conditions. The present novel method makes possible the large-scale fabrication of β-SiC nanowires.  相似文献   

7.
A new SiC growth system using the dual-directional sublimation method was investigated in this study. Induction heating and thermal conditions were computed and analyzed by using a global simulation model, and then the values of growth rate and shear stress in a growing crystal were calculated and compared with those in a conventional system. The results showed that the growth rate of SiC single crystals can be increased by twofold by using the dual-directional sublimation method with little increase in electrical power consumption and that thermal stresses can be reduced due to no constraint of the crucible lid and low temperature gradient in crystals.  相似文献   

8.
We present a detailed study, on the influence of buffer strain on the MOVPE crystal growth mode in the QW active layer of high-brightness InGaN LEDs on SiC substrate. While highly strained buffers are related to InGaN QWs with homogeneous In-distribution, low In-concentration and reduced quantum efficiency, buffers with reduced strain are shown to induce InGaN-QW growth with a dot-like In-distribution, locally high In-concentration and good quantum efficiency. Using an optimised buffer technology, we developed extremely bright InGaN QW-LEDs with a brightness of more than 7 mW (at 460 nm and 20 mA) in a 5 mm radial lamp, good wavelength stability, low forward voltage, high ESD-stability and low ageing.  相似文献   

9.
Epitaxial, graphitic carbon thin films were directly grown on C-face/(0 0 0 1¯) SiC and (0 0 0 1) sapphire by chemical vapor deposition (CVD), using propane as a carbon source and without any catalytic metal on the substrate surface. Raman spectroscopy shows the signature of multilayer graphene/graphite growth on both the SiC and sapphire. Raman 2D-peaks have Lorentzian lineshapes with FWHM of ∼60 cm−1 and the ratio of the D-peak to G-peak intensity (ID/IG) linearly decreases (down to 0.06) as growth temperature is increased. The epitaxial relationship between film and substrates were determined by X-ray diffraction. On both substrates, graphitic layers are oriented parallel to the substrate, but exhibit significant rotational disorder about the surface normal, and predominantly rhombohedral stacking. Film thicknesses were determined to be a function of growth time, growth temperature, and propane flow rate.  相似文献   

10.
We report on a comparative investigation of the incorporation of group III, IV and V impurities in 3C–SiC heteroepitaxial layers grown by the vapour–liquid–solid (VLS) mechanism on on-axis α-SiC substrates. To this end, various Si-based melts have been used with addition of Al, Ga, Ge and Sn species. Homoepitaxial α-SiC layers grown using Al-based melts were used for comparison purposed for Al incorporation. Nitrogen incorporation depth profile systematically displays an overshoot at the substrate/epilayer interface for all the layers. Ga and Al incorporations follow the same distribution shape as N whereas this is not the case for the isoelectronic impurities Ge and Sn. This suggests some interaction between Ga/Al and N coming from the high bonding energy between the group III and V elements, which does not exist with Ge and Sn. This is why both incorporate as a cluster. A model of incorporation is proposed taking into account metal-N and metal-C bonding energies together with the solid solubility of the corresponding nitrides.  相似文献   

11.
Concentrations of nitrogen shallow donors, boron shallow acceptors, charge carriers, and electron traps were measured as a function of position along the growth axis in a series of undoped 6H–SiC boules grown by sublimation method with and without addition of hydrogen to the growth atmosphere. Elemental analysis by secondary ion mass spectrometry and measurements of electrical properties indicate that the addition of hydrogen suppresses nitrogen incorporation and formation of all electron traps. Concentration of boron is not affected by hydrogen presence. The addition of hydrogen to the growth ambient improves the uniformity of nitrogen incorporation and deep trap distribution along the growth axis. The results are interpreted as due to increased carbon transport and corresponding shift of crystal stoichiometry toward carbon-rich side of the SiC existence range.  相似文献   

12.
Large-scale SiC nanocables were synthesized on a Ni(NO3)2-catalyzed Si substrate by using a simple and cheap method based on thermal decomposition of methanol. Based on X-ray diffraction and high-magnification transmission electron microscopy, the as-grown nanocables consisted of crystalline SiC cores and amorphous SiO2 shells. The diameters of SiC cores were 5.7–10 nm and the thicknesses of SiO2 shells were 9–20 nm. Dividing of nanocables was observed and its origin was investigated. An asymmetric feature of SiC TO band with a shoulder at the high-frequency side was attributed to the contribution of SiC TO mode. The nanocables displayed strong violet–blue emission. A possible growth mechanism was proposed.  相似文献   

13.
Sapphire and SiC are typical substrates used for GaN growth. However, they are non-native substrates and result in highly defective materials. The use of ZnO substrates can result in perfect lattice-matched conditions for 22% indium InGaN layers, which have been found to suppress phase separation compared to the same growths on sapphire. InGaN layers were grown on standard (0 0 0 2) GaN template/sapphire and (0 0 0 1) ZnO substrates by metalorganic chemical vapor deposition. These two substrates exhibited two distinct states of strain relaxation, which have direct effects on phase separation. InGaN with 32% indium exhibited phase separation when grown on sapphire. Sapphire samples were compared with corresponding growths on ZnO, which showed no evidence of phase separation with indium content as high as 43%. Additional studies in Si-doping of InGaN films also strongly induced phase separation in the films on sapphire compared with those on ZnO. High-resolution transmission electron microscopy results showed perfectly matched crystals at the GaN buffer/ZnO interface. This implied that InGaN with high indium content may stay completely strained on a thin GaN buffer. This method of lattice matching InGaN on ZnO offers a new approach to grow efficient emitters.  相似文献   

14.
15.
A fully coupled compressible multi-phase flow solver was developed to effectively design a large furnace for producing large-size SiC crystals. Compressible effect, convection and buoyancy effects, flow coupling between argon gas and species, and the Stefan effect are included. A small and experimental furnace is used to validate the solver. First, the essentiality of 2D flow calculation and the significance of incorporating buoyancy effect and gas convection, the Stefan effect, and flow interaction between argon gas and species were investigated by numerical results. Then the effects of argon gas on deposition rate, growth rate, graphitization on the powder source, and supersaturation and stoichiometry on the seed were analyzed. Finally, the advantages of an extra chamber design were explained, and improvement of growth rate was validated by the present solver.  相似文献   

16.
Bulk AlN–SiC mixed single crystals are prepared by sublimation growth employing pure AlN or mixed AlN–SiC sources and 6H-SiC seed crystals. As the growth temperature is increased from 1900 to 2050 °C, using seeds with different off-axis orientations, inclined up to 42° from the basal plane toward the (0 1 –1 0)-plane, or using different source materials, crystals with different Si/C contents are obtained. Dependent on the Si and/or C content, crystal coloration changes from yellowish to greenish to blackish. Modification in crystals’ coloration and corresponding changes in below band-gap optical absorption and cathodoluminescence spectra are discussed.  相似文献   

17.
KOH etching and high-resolution X-ray diffractometry (HRXRD) were used to study the evolution and structure of low-angle grain boundaries (LAGBs), which extended along 〈1 -1 0 0〉 in 6H–SiC bulk crystals grown by the sublimation method. It was found that LAGBs formed in the growth process consisted of an array of threading dislocations and took different configurations under different radial temperature gradients (RTGs). HRXRD results proved that the domain at one side of LAGBs formed under a low radial temperature gradient has only tilts around the c-axis with respect to the other domain at another side of LAGBs.  相似文献   

18.
Results of high-pressure directional growth of GaN on foreign substrates: SiC, sapphire and GaN/sapphire MOCVD templates are presented. The role of nitrogen pressure and supersaturation in the growth process is discussed. The conditions for stable growth of the nitride are determined. The results of the crystallization process are compared with those obtained for directional growth on pressure grown GaN crystals.  相似文献   

19.
Uta Helbig   《Journal of Crystal Growth》2008,310(11):2863-2870
The growth of calcium carbonate crystals has attracted growing attention as a model system for biomineralisation processes. Organic molecules and gelatinous matrices are known to play an essential role in the formation of hard tissues. For the investigation of the function of specific influence factors, a model experiment is necessary. Several hydrogels were previously tested as growth matrices for calcium carbonate.

For laboratory experiments, a double diffusion set-up for the growth of crystals in gels was established earlier. Calcium carbonate crystals were grown in polyacrylamide hydrogels.

Here the influence of the polymer content in the hydrogels on the crystallisation behaviour is reported. Time-resolved and spatially resolved crystallisation experiments were conducted. The collected calcium carbonate precipitates were analysed by light microscopy, scanning electron microscopy and X-ray diffraction.

The morphology of the developing crystals was found to be dependent on the polymer content of the hydrogels.  相似文献   


20.
Homoepitaxial growth on off-axis α-SiC at reduced pressures in a horizontal cold-wall chemical vapor deposition (CVD) system operating at has been investigated. The growth rate was found inversely proportional to the square root of total pressure or the partial pressure of H2, a carrier gas. A model to explain the experimental results is proposed, where the rate-determining process in CVD is competition between Si species and hydrogen atoms for C (carbon) dangling bonds at SiC step edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号