首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Let G = (V, E) be a any simple, undirected graph on n ≥ 3 vertices with the degree sequence . We consider the class of graphs satisfying the condition where , is a positive integer. It is known that is hamiltonian if θ ≤ δ. In this paper,
(i)  we give a necessary and sufficient condition, easy to check, ensuring that is nonhamiltonian and we characterize all the exceptional sub-classes.
(ii)  we prove that is either bipartite or contains cycles of all lengths from 3 to c(G), the length of a longest cycle in G.
  相似文献   

2.
3.
Let G be a simple graph. The point arboricity ρ(G) of G is defined as the minimum number of subsets in a partition of the point set of G so that each subset induces an acyclic subgraph. The list point arboricity ρ l (G) is the minimum k so that there is an acyclic L-coloring for any list assignment L of G which |L(v)| ≥ k. So ρ(G) ≤ ρ l (G) for any graph G. Xue and Wu proved that the list point arboricity of bipartite graphs can be arbitrarily large. As an analogue to the well-known theorem of Ohba for list chromatic number, we obtain ρ l (G + K n ) = ρ(G + K n ) for any fixed graph G when n is sufficiently large. As a consequence, if ρ(G) is close enough to half of the number of vertices in G, then ρ l (G) = ρ(G). Particularly, we determine that , where K 2(n) is the complete n-partite graph with each partite set containing exactly two vertices. We also conjecture that for a graph G with n vertices, if then ρ l (G) = ρ(G). Research supported by NSFC (No.10601044) and XJEDU2006S05.  相似文献   

4.
Let G be a simple graph with n vertices. For any , let , and , and and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.   相似文献   

5.
We study characterizations of generic rigid graphs and generic circuits in the plane using only few decompositions into spanning trees. Generic rigid graphs in the plane can be characterized by spanning tree decompositions [5,6]. A graph G with n vertices and 2n − 3 edges is generic rigid in the plane if and only if doubling any edge results in a graph which is the union of two spanning trees. This requires 2n − 3 decompositions into spanning trees. We show that n − 2 decompositions suffice: only edges of G − T can be doubled where T is a spanning tree of G. A recent result on tensegrity frameworks by Recski [7] implies a characterization of generic circuits in the plane. A graph G with n vertices and 2n − 2 edges is a generic circuit in the plane if and only if replacing any edge of G by any (possibly new) edge results in a graph which is the union of two spanning trees. This requires decompositions into spanning trees. We show that 2n − 2 decompositions suffice. Let be any circular order of edges of G (i.e. ). The graph G is a generic circuit in the plane if and only if is the union of two spanning trees for any . Furthermore, we show that only n decompositions into spanning trees suffice.  相似文献   

6.
A k-cube (or “a unit cube in k dimensions”) is defined as the Cartesian product where R i (for 1 ≤ i ≤ k) is an interval of the form [a i , a i  + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i.e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Δ, . This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to .  相似文献   

7.
Let r ≥ 2 be an integer. A real number is a jump for r if for any and any integer m, m ≥ r, any r-uniform graph with vertices and density at least contains a subgraph with m vertices and density at least α + c, where cc(α) does not depend on or m. It follows from a result of Erdős, Stone, and Simonovits that every is a jump for r = 2. Erdőos asked whether the same is true for r ≥ 3. Frankl and R?dl gave a negative answer by showing an infinite sequence of non-jumping numbers for r ≥ 3. However, there are a lot of unknowns on determining whether a number is a jump for r ≥ 3. In this paper, we first find two infinite sequences of non-jumping numbers for r = 4, then we extend one of the results to every r ≥ 4. Our approach is still based on the approach developed by Frankl and R?dl. Received November 30, 2005  相似文献   

8.
In this paper, the set of quivers of semi-maximal rings is investigated. It is proved that the elements of this set are formed by the elements of the set of quivers of tiled orders and that the set of quivers of tiled orders with n vertices is determined by the integer points of a convex polyhedral domain that lie in the nonnegative part of the space . It is also proved that the set of quivers of tiled orders with n vertices contains all simple, oriented, strongly connected graphs with n vertices and n loops, does not contain any graphs with n vertices and n − 1 loops, and contains only a part of the graphs with n vertices and m (m < n − 1) loops. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 215–223, 2005.  相似文献   

9.
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian. J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen, Germany.  相似文献   

10.
J.L. Andersen proved that there is 5-torsion in the bottom nonvanishing homology group of the simplicial complex of graphs of degree at most two on seven vertices. We use this result to demonstrate that there is 5-torsion also in the bottom nonvanishing homology group of the matching complex on 14 vertices. Combining our observation with results due to Bouc and to Shareshian and Wachs, we conclude that the case n=14 is exceptional; for all other n, the torsion subgroup of the bottom nonvanishing homology group has exponent three or is zero. The possibility remains that there is other torsion than 3-torsion in higher-degree homology groups of when n≥13 and n≠14. Research of J. Jonsson was supported by European Graduate Program “Combinatorics, Geometry, and Computation”, DFG-GRK 588/2.  相似文献   

11.
12.
In a complete bipartite decomposition π of a graph, we consider the number ϑ(v;π) of complete bipartite subgraphs incident with a vertex v. Let ϑ(G)= ϑ(v;π). In this paper the exact values of ϑ(G) for complete graphs and hypercubes and a sharp upper bound on ϑ(G) for planar graphs are provided, respectively. An open problem proposed by P.C. Fishburn and P.L. Hammer is solved as well.  相似文献   

13.
We (1) determine the number of Latin rectangles with 11 columns and each possible number of rows, including the Latin squares of order 11, (2) answer some questions of Alter by showing that the number of reduced Latin squares of order n is divisible by f! where f is a particular integer close to (3) provide a formula for the number of Latin squares in terms of permanents of (+1, −1)-matrices, (4) find the extremal values for the number of 1-factorisations of k-regular bipartite graphs on 2n vertices whenever 1 ≤ kn ≤ 11, (5) show that the proportion of Latin squares with a non-trivial symmetry group tends quickly to zero as the order increases. Received September 3, 2004  相似文献   

14.
Recently, various authors have obtained results about the existence of long cycles in graphs with a given minimum degreed. We extend these results to the case where only some of the vertices are known to have degree at leastd, and we want to find a cycle through as many of these vertices as possible. IfG is a graph onn vertices andW is a set ofw vertices of degree at leastd, we prove that there is a cycle through at least vertices ofW. We also find the extremal graphs for this property.Research supported in part by NSF Grant DMS 8806097  相似文献   

15.
The nullity of a graph is defined to be the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. In this paper, we obtain the nullity set of bipartite graphs of order n, and characterize the bipartite graphs with nullity n-4 and the regular bipartite graphs with nullity n-6.  相似文献   

16.
Given a graph G and a subset S of the vertex set of G, the discrepancy of S is defined as the difference between the actual and expected numbers of the edges in the subgraph induced on S. We show that for every graph with n vertices and e edges, n < e < n(n ? 1)/4, there is an n/2-element subset with the discrepancy of the order of magnitude of \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt {ne}$\end{document} For graphs with fewer than n edges, we calculate the asymptotics for the maximum guaranteed discrepancy of an n/2-element subset. We also introduce a new notion called “bipartite discrepancy” and discuss related results and open problems.  相似文献   

17.
A non-empty set X of vertices of an acyclic digraph is called connected if the underlying undirected graph induced by X is connected and it is called convex if no two vertices of X are connected by a directed path in which some vertices are not in X. The set of convex sets (connected convex sets) of an acyclic digraph D is denoted by and its size by co(D) (cc(D)). Gutin et al. (2008) conjectured that the sum of the sizes of all convex sets (connected convex sets) in D equals Θ(n · co(D)) (Θ(n · cc(D))) where n is the order of D. In this paper we exhibit a family of connected acyclic digraphs with and . We also show that the number of connected convex sets of order k in any connected acyclic digraph of order n is at least n − k + 1. This is a strengthening of a theorem of Gutin and Yeo.  相似文献   

18.
Dedicated to the memory of Paul Erdős A graph is called -free if it contains no cycle of length four as an induced subgraph. We prove that if a -free graph has n vertices and at least edges then it has a complete subgraph of vertices, where depends only on . We also give estimates on and show that a similar result does not hold for H-free graphs––unless H is an induced subgraph of . The best value of is determined for chordal graphs. Received October 25, 1999 RID="*" ID="*" Supported by OTKA grant T029074. RID="**" ID="**" Supported by TKI grant stochastics@TUB and by OTKA grant T026203.  相似文献   

19.
LetαR,ε=(α+o(1)))/n andp=1/2(1+ε). Denote by a random subgraph of the directedn-dimensional hypercube , where each of then2 n directed edges is chosen independently with probabilityp. Then the probability that is strong-connected tends to exp{−2exp{−α}}. The proof of this main result uses a double-randomization technique. Similar techniques may be employed to yield a simpler proof of the known analogous result for undirected random graphs on the cube. The main result is applied to the analysis of the dynamic behavior of asynchronous binary networks. It implies that for almost all random binary networks with fixpoints, convergence to a fixpoint is guaranteed. Partially supported by grant #438/89 of the Israel Academy of Sciences.  相似文献   

20.
We consider graphs with prescribed mean curvature and flat normal bundle. Using techniques of Schoen et al. (Acta Math 134:275–288, 1975) and Ecker and Huisken (Ann Inst H Poincaré Anal Non Linèaire 6:251–260, 1989), we derive the interior curvature estimate
up to dimension n ≤ 5, where C is a constant depending on natural geometric data of Σ only. This generalizes previous results of Smoczyk et al. (Calc Var Partial Differ Equs 2006) and Wang (Preprint, 2004) for minimal graphs with flat normal bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号