首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable oxygen and hydrogen isotope compositions of organic samples are increasingly being used to investigate patterns of animal migration. Relatively few studies have applied these techniques to modern humans, despite a variety of potential forensic applications. We analyzed drinking water and food at two geographic locations, East Greenbush, New York (USA) and Fairbanks, Alaska (USA), with different delta(18)O and deltaD values for precipitation and tap water. Foods varied widely in measured delta(18)O and deltaD values, but not systematically by purchase location. We measured delta(18)O and deltaD values of scalp hair from five residents at each location. We used a mixing model to establish the proportion of oxygen and hydrogen in head hair derived from drinking water ( approximately 27% and approximately 36%, respectively). Finally, we analyzed the delta(18)O and deltaD values of facial hair and urine from a subject who traveled from Fairbanks to East Greenbush, on to the UK and back to Fairbanks. Urine delta(18)O and deltaD values responded immediately and strongly to travel-related change in drinking water, and were well described by a single-pool turnover model. Beard hair delta(18)O values tracked changes in urine delta(18)O closely, and oscillated between the values for the resident populations in both locations. In contrast, beard hair deltaD values did not track changes in urine deltaD as well, and retained a signature of the traveler's permanent residence. Our findings show that the delta(18)O and deltaD values of urine and facial hair (specifically delta(18)O) can provide a record of the geographical movements of humans.  相似文献   

2.
Stable isotope analysis of organic materials for their hydrogen ((2)H), carbon ((13)C), nitrogen ((15)N) or oxygen ((18)O) isotopic composition using continuous flow isotope ratio mass spectrometry (CF-IRMS) is an increasingly used tool in forensic chemical analysis. (2)H isotopic analysis can present a huge challenge, especially when dealing with exhibits comprising exchangeable hydrogen such as human scalp hair. However, to yield forensic data that are fit for purpose, analysis of the (2)H isotopic composition of the same homogeneous human hair sample by any laboratory worldwide must yield the same isotopic composition within analytical uncertainty. This paper presents longitudinal (2)H isotope data for four human hair samples of different provenance, measured by three different laboratories whose sample preparation was based on a two-stage H exchange equilibration method. Although each laboratory employed varying means to comply with the generic features of the sample preparation protocol such as the (2)H isotopic composition of exchange waters or drying down of samples prior to analysis, within each laboratory the Principle of Identical Treatment (P.I.T.) was applied for each individual experiment. Despite the variation in materials and procedures employed by the three laboratories, repeatable and reproducible 'true' (2)H isotope values (δ(2)H(hair,true)) were determined by each laboratory for each of the four stock samples of human scalp hair. The between-laboratory differences for obtained δ(2)H(hair,true) values ranged from 0.1 to 2.5 ‰. With an overall 95% confidence interval of ±2.8 ‰, these differences were not significantly different, which suggests that the general method of two-stage exchange equilibration carried out at ambient temperature is suitable for accurately and reproducibly determining 'true' δ(2)H-values for hair and other proteins provided that certain key conditions are met.  相似文献   

3.
Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).  相似文献   

4.
A method for the isotope analysis of fluid inclusion water in speleothem calcite is presented. The technique is based on a commercially available continuous-flow pyrolysis furnace (ThermoFinnigan TC-EA). The main adaptation made to the standard TC-EA configuration is the addition of a crusher and cold trap unit, which is connected to the carrier gas inlet at the top of the TC-EA reactor tube. A series of tests conducted with this device shows that: (1) standard waters, injected in the crusher, and passed through a cryogenic trapping routine, yield accurate delta(2)H values; (2) crushed cubes of speleothem calcite from two Peruvian caves with rather dissimilar seepage water delta(2)H values yield fluid inclusion delta(2)H values in good accordance with these drip waters. The clear advantage of this continuous-flow technique for fluid inclusion isotope analysis is that it is relatively quick compared with other techniques. Since the conditions of water sample introduction into the TC-EA are identical for delta(2)H and delta(18)O analysis, we expect that only limited adaptations to the extraction procedure are required to provide delta(18)O analysis of fluid inclusion samples with the same device.  相似文献   

5.
The influence of flooding on N2O fluxes, denitrification rates, dual isotope (delta18O and delta15N) and isotopomer (1delta15N and 2delta15N) ratios of emitted N2O from estuarine intertidal zones was examined in a laboratory study using tidal flooding incubation chambers. Five replicate soil cores were collected from two differently managed intertidal zones in the estuary of the River Torridge (North Devon, UK): (1) a natural salt marsh fringing the estuary, and 2 a managed retreat site, previous agricultural land to which flooding was restored in summer 2001. Gas samples from the incubated soil cores were collected from the tidal chamber headspaces over a range of flooding conditions, and analysed for the delta18O, delta15N, 1delta15N and 2delta15N values of the emitted N2O. Isotope signals did not differ between the two sites, and nitrate addition to the flooding water did not change the isotopic content of emitted N2O. Under non-flooded conditions, the isotopic composition of the emitted N2O displayed a moderate variability in delta18O and 2delta15N delta values that was expected for microbial activity associated with denitrification. However, under flooded conditions, half of the samples showed strong and simultaneous depletions in 1delta15N and delta18O values, but not in 2delta15N. Such an isotope signal has not been reported in the literature, and it could point towards an unidentified N2O production pathway. Its signature differed from denitrification, which was generally the N2O production pathway in the salt marsh and the managed retreat site.  相似文献   

6.
The bacterial denitrification method for isotopic analysis of nitrate using N(2)O generated from Pseudomonas aureofaciens may overestimate delta(15)N values by as much as 1-2 per thousand for samples containing atmospheric nitrate because of mass-independent (17)O variations in such samples. By analyzing such samples for delta(15)N and delta(18)O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct delta(15)N values because oxygen in N(2)O generated by P. chlororaphis is primarily derived from H(2)O. The difference between the apparent delta(15)N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent (17)O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different delta(18)O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N(2)O derived from the nitrate and from water with each denitrifier. This information can be used to improve delta(15)N values of nitrates having excess (17)O. The same analyses also yield estimates of the magnitude of (17)O excess in the nitrate (expressed as Delta(17)O) that may be useful in some environmental studies. The 1-sigma uncertainties of delta(15)N, delta(18)O and Delta(17)O measurements are +/-0.2, +/-0.3 and +/-5 per thousand, respectively.  相似文献   

7.
A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.  相似文献   

8.
This paper presents a modified H(2)O-CO(2) equilibration method for stable oxygen isotopic composition (delta(18)O) analysis of water. This method enables rapid and simple delta(18)O analysis of milligram quantities of water, by employing solid reagent NaHCO(3) as the CO(2) source, a small (0.6 mL) glass vial for the equilibration chamber, and an isotope-monitoring gas chromatography/mass spectrometry (irm-GC/MS) system for delta 18O(CO2) analysis. This method has several advantages, including simple handling for the H(2)O-CO(2) equilibration (without purging and/or evacuation treatments), rapid and easy delta(18)O analysis of equilibrated CO(2), and highly sensitive and highly precise delta(18)O analysis of H(2)O, using samples as small as 10 mg and with a precision of less than +/-0.12 per thousand. The time needed to attain oxygen isotopic equilibration between CO(2) and water is also comparable (17 h for 10 mg H(2)O and 10 h for 100 mg H(2)O) to other previous methods using CO(2) gas for the CO(2) source. The extent of delta(18)O variation of sample water from its initial delta(18)O value due to isotope exchange with added NaHCO(3) is also discussed. It is concluded that the correction needed is negligible (less than 0.1 per thousand ) as long as the oxygen atom ratio (O(NaHCO3)/O(H2O)) is less than 3.3 +/- 10(-3) and provided the delta18O(H2O) determination is made by comparing delta(18)O of CO(2) equilibrated with sample water and that equilibrated with standard water of a moderately close delta(18)O value, less than 30 per thousand difference.  相似文献   

9.
We describe a modified version of the equilibration method and a correction algorithm for isotope ratio measurements of small quantities of water samples. The deltaD and the delta(18)O of the same water sample can both be analyzed using an automated equilibrator with sample sizes as small as 50 microL. Conventional equilibration techniques generally require water samples of several microL. That limitation is attributable mainly to changes in the isotope ratio ((18)O/(16)O or D/H) of water samples during isotopic exchange between the equilibration gas (CO(2) or H(2)) and water, and therefore the technique for microL quantities of water requires mass-balance correction using the water/gas (CO(2) or H(2)) mole ratio to correct this isotopic effect. We quantitatively evaluate factors controlling the variability of the isotopic effect due to sample size. Theoretical consideration shows that a simple linear equation corrects for the effects without determining parameters such as isotope fractionation factors and water/gas mole ratios. Precisions (1-sigma) of 50-microL meteoric water samples whose isotopic compositions of -1.4 to -396.2 per thousand for deltaD are +/-0.5 to +/-0.6 per thousand, and of -0.37 to -51.37 per thousand for delta(18)O are +/-0.01 to +/-0.11 per thousand.  相似文献   

10.
Sulfur (S) isotope ratios of thoroughly dried organic samples were measured by direct thermal decomposition in an elemental analyzer coupled to an isotope ratio mass spectrometer in continuous flow mode (EA-CF-IRMS). For organic samples of up to 13 mg weight and with total S contents of more than 10 microg, the reproducibility of the delta34S(organic) values was +/-0.4 per thousand or better. However, the delta34S values of organic samples measured directly by online EA-CF-IRMS analysis were between 0.3 and 2.9 per thousand higher than those determined on BaSO4 precipitates produced by Parr Bomb oxidation from the same sample material. Our results suggest that structural oxygen in organic samples influences the oxygen isotope ratios of the SO2 produced from organic samples. Consequently, SO2 generated from organic samples appears to have different 18O/16O ratios than SO2 generated from BaSO4 precipitates and inorganic reference materials, resulting in a deviation from the true delta34S values because of 32S16O18O contributions to mass 66. It was shown that both the amount of structural oxygen in the organic sample, and the difference of the oxygen isotope ratios between organic samples and tank O2, influenced the magnitude of the observed deviation from the true delta34S value after direct EA-CF-IRMS analysis of organic samples. Suggestions are made to correct the difference between measured delta34S(organic) and true delta34S values in order to obtain not only reproducible, but also accurate S isotope ratios for organic materials by EA-CF-IRMS.  相似文献   

11.
Relationships between recent migration and hair delta(18)O values were examined for 40 people living in a rural community in SW England. The isotopic contents of 35 'local' hair samples were compared with those of 5 recently arrived individuals (from Australia, Canada, Chile, Germany and the USA). The hair delta(18)O values of these 'visitors' were +7.9 (Omaha, USA), +11.2 (Jena, Germany), +12.1 (Osorno, Chile), +12.6 (Montreal, Canada) and +14.3 per thousand (Adelaide, Australia). The hair value for the USA visitor (+7.9 per thousand) fell outside the range for the 33 local adult residents, +10.5 to +14.3 per thousand (+12.7 +/- 0.8 per thousand). Hair delta(18)O values did not identify the individuals from Adelaide, Montreal and Osorno as 'visitors', but hair delta(13)C or delta(34)S data did. Combining the hair delta(18)O, delta(13)C and delta(34)S values using principal components analysis (two components explained 89% of the overall variation among the 40 subjects) helped to more clearly distinguish European from non-European individuals, indicating the existence of global overall isotope (geo-origin) relationships.  相似文献   

12.
Compound-specific deltaD and delta13C analyses of gas mixtures are useful indicators of geochemical and environmental factors. However, the relative concentrations of individual components in gas mixtures (e.g., H2, CO2, methane, ethane, propane, i-butane, n-butane) may vary over several orders of magnitude. The determination of hydrogen and carbon compound-specific stable isotope ratios requires that the hydrogen and carbon dioxide produced from each separated component has a concentration adjusted to match the dynamic range of the stable isotope mass spectrometer. We present a custom-built gas sampling and injection system (GASIS) linked with a Delta Plus XP mass spectrometer that provides flexibility, ease of operation, and economical use of small gas samples with wide ranges of analyte concentrations. The overall on-line GC-ox/red-IRMS (Gas Chromatography - oxidation/reduction - Isotope Ratio Mass Spectrometry) system consists of (i) a customized GASIS inlet system and (ii) two alternative reactors, namely an oxidative Cu-Ni-Pt reactor at 950 degrees C for production of CO2 and a reductive graphitized Al2O3 reactor at 1420 degrees C for production of H2. In addition, the system is equipped with (iii) a liquid nitrogen spray-cooling unit for cryo-GC-focusing at -20 degrees C, and (iv) a Nafion dryer for removal of water vapor from product CO2. The three injection loops of the GASIS inlet allow flexibility in the volume of injected analyte gas (e.g., from 0.06 to 500 microL) in order to measure reproducible deltaD and delta13C values for gases at concentrations ranging from 100% down to 10 ppm. We calibrate our GC-ox/red-IRMS system with two isotopically distinct methane references gases that are combusted off-line and characterized using dual-inlet IRMS.  相似文献   

13.
Organic oxygen and hydrogen isotopes in a porcine controlled dietary study   总被引:1,自引:0,他引:1  
Controlled feeding studies have been useful in assessing the relationship between isotope values from dietary sources and consumer tissues. We report the organic oxygen and hydrogen values of animal tissue from a porcine controlled dietary study. A complex mixture of fractionation and incorporation is revealed. In both deltaD and delta(18)O, differences in the absolute values and the amount of variation between and within consumer tissue are documented. Significant differences in deltaD and delta(18)O are observed between protein sources such as keratin and collagen.  相似文献   

14.
Hydrogen peroxide (H(2)O(2)) is a widely used oxidizer with many commercial applications; unfortunately, it also has terrorist-related uses. We analyzed 97 hydrogen peroxide solutions representing four grades purchased across the United States and in Mexico. As expected, the range of hydrogen (δ(2)H, 230‰) and oxygen (δ(18)O, 24‰) isotope values of the H(2)O(2) solutions was large, reflecting the broad isotopic range of dilution waters. This resulted in predictable linear relationships of δ(2)H and δ(18)O values of H(2)O(2) solutions that were near parallel to the Meteoric Water Line (MWL), offset by the concentration of H(2)O(2) in the solution. By grade, dilute (3 to 35%) H(2)O(2) solutions were not statistically different in slope. Although the δ(2)H values of manufactured H(2)O(2) could be different from those of water, rapid H(2)O(2)-H(2)O exchange of H atoms eliminated any distinct isotope signal. We developed a method to measure the δ(18)O value of H(2)O(2) independent of dilution water by directly measuring O(2) gas generated from a catalase-induced disproportionation reaction. We predicted that the δ(18)O values of H(2)O(2) would be similar to that of atmospheric oxygen (+23.5‰), the predominant source of oxygen in the most common H(2)O(2) manufacturing process (median disproportionated δ(18)O=23.8‰). The predictable H-O relationships in H(2)O(2) solutions make it possible to distinguish commercial dilutions from clandestine concentration practices. Future applications of this work include synthesis studies that investigate the chemical link between H(2)O(2) reagents and peroxide-based explosive products, which may assist law enforcement in criminal investigations.  相似文献   

15.
In this paper we present an overview of the present knowledge relating to methods that avoid interference of N2O on delta13C and delta18O measurements of CO2. The main focus of research to date has been on atmospheric samples. However, N2O is predominantly generated by soil processes. Isotope analyses related to soil trace gas emissions are often performed with continuous flow isotope ratio mass spectrometers, which do not necessarily have the high precision needed for atmospheric research. However, it was shown by using laboratory and field samples that a correction to obtain reliable delta13C and delta18O values is also required for a commercial continuous flow isotope ratio mass spectrometer. The capillary gas chromatography column of the original equipment was changed to a packed Porapak Q column. This adaptation resulted in an improved accuracy and precision of delta13C (standard deviation(Ghent): from 0.2 to 0.08 per thousand; standard deviation(Lincoln): from 0.2 to 0.13 per thousand) of CO2 for N2O/CO2 ratios up to 0.1. For delta18O there was an improvement for the standard deviation measured at Ghent University (0.13 to 0.08 per thousand) but not for the measurements at Lincoln University (0.08 to 0.23 per thousand). The benefits of using the packed Porapak Q column compared with the theoretical correction method meant that samples were not limited to small N(2)O concentrations, they did not require an extra N2O concentration measurement, and measurements were independent of the variable isotopic composition of N2O from soil.  相似文献   

16.
The delta(13)C(VPDB), delta(2)H(VSMOW) and delta(18)O(VSMOW) values of caffeine isolated from Arabica green coffee beans of different geographical origin have been determined by isotope ratio mass spectrometry (IRMS) using elemental analysis (EA) in the "combustion" (C) and "pyrolysis" (P) modes (EA-C/P-IRMS). In total, 45 coffee samples (20 from Central and South America, 16 from Africa, six from Indonesia, and three from Jamaica and Hawaii) were analysed, as well as three reference samples of synthetic caffeine. Validation was performed by excluding isotope discrimination in the course of sample preparation and determining linear dynamic ranges for EA-P-IRMS measurements. The values for caffeine from green coffee ranged from -25.1 to - 29.9 per thousand, -109 to -198 per thousand, and +2.0 to -12.0 per thousand for delta(13)C(VPDB), delta(2)H(VSMOW), and delta(18)O(VSMOW), respectively. Data evaluation by linear discrimination analysis (LDA) and by classification and regression tree (CART) analysis revealed the delta(18)O(VSMOW) values to be highly significant. Use of LDA on the delta(2)H(VSMOW) and delta(18)O(VSMOW) data from coffee of African and Central/South American provenance led to error rates of 5.7% and 7.7% for adaption and cross validation, respectively.  相似文献   

17.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

18.
Accurate hydrogen isotopic measurements of keratin materials have been a challenge due to exchangeable hydrogen in the sample matrix and the paucity of appropriate isotopic reference materials for calibration. We found that the most reproducible δ(2)H(VSMOW-SLAP) and mole fraction of exchangeable hydrogen, x(H)(ex), of keratin materials were measured with equilibration at ambient temperature using two desiccators and two different equilibration waters with two sets of the keratin materials for 6 days. Following equilibration, drying the keratin materials in a vacuum oven for 4 days at 60 °C was most critical. The δ(2)H analysis protocol also includes interspersing isotopic reference waters in silver tubes among samples in the carousel of a thermal conversion elemental analyzer (TC/EA) reduction unit. Using this analytical protocol, δ(2)H(VSMOW-SLAP) values of the non-exchangeable fractions of USGS42 and USGS43 human-hair isotopic reference materials were determined to be -78.5 ± 2.3 ‰ and -50.3 ± 2.8 ‰, respectively. The measured x(H)(ex) values of keratin materials analyzed with steam equilibration and N(2) drying were substantially higher than those previously published, and dry N(2) purging was unable to remove absorbed moisture completely, even with overnight purging. The δ(2)H values of keratin materials measured with steam equilibration were about 10 ‰ lower than values determined with equilibration in desiccators at ambient temperatures when on-line evacuation was used to dry samples. With steam equilibrations the x(H)(ex) of commercial keratin powder was as high as 28%. Using human-hair isotopic reference materials to calibrate other keratin materials, such as hoof or horn, can introduce bias in δ(2)H measurements because the amount of absorbed water and the x(H)(ex) values may differ from those of unknown samples. Correct δ(2)H(VSMOW-SLAP) values of the non-exchangeable fractions of unknown human-hair samples can be determined with atmospheric moisture equilibration by normalizing with USGS42 and USGS43 human-hair reference materials when all materials have the same powder size.  相似文献   

19.
An off-line technique is described for the preparation of H(2) from water prior to analysis of delta(2)H by dual-inlet isotope ratio mass spectrometry. H(2) is produced from sample water by reaction with LiAlH(4). This provides a rapid and inexpensive method for the analysis of delta(2)H in small (10 microL) samples of water. Precision was +/- 4.2 to 8.0 (1sigma(n), n = 8) delta(2)H(VSMOW) for samples between 428 and 1500 delta(2)H(VSMOW), +/- 14.5 delta(2)H(VSMOW) for water enriched to 3750 delta(2)H(VSMOW) and +/- 26.0 delta(2)H(VSMOW) for water enriched to 6100 delta(2)H(VSMOW). Accuracy was +/- 1.1 to 4.2 delta(2)H(VSMOW) for water standards from natural abundance to 1000 delta(2)H(VSMOW) (the highest enrichment at which water of accepted delta(2)H is currently available). This method for delta(2)H determination is most appropriate for use with small (<50 microL) samples of high delta(2)H enrichment such as those produced from doubly labelled water studies of small animals. The levels of measurement precision of delta(2)H would contribute 2.6-3.8% to the precision error in estimates of small animal energy expenditure made using the doubly labelled water technique when duplicate analyses are performed.  相似文献   

20.
A new continuous-flow system for the analysis of the complete stable isotopic composition of water vapor has been developed. The sample size is reduced to only 120 microg (identical with 120 nL of liquid substance) of water, yielding precisions of about 0.7, 1.3 and 7 per thousand for delta17O, delta18O and delta2H, respectively. The total time for the analysis of a sample is about 150 min including purging times. Oxidized steel surfaces can be a source of memory effects which can be corrected for. The system is predestined for atmospheric applications in the tropopause region, as the sample can be directly introduced into the system from a cryogenic trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号