首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-quality free-standing poly(dibenzo-18-crown-6) (PDBC) films with a conductivity of 4.1 × 10−2 S cm−1 and good thermal stability were synthesized electrochemically on stainless steel electrode by direct anodic oxidation of dibenzo-18-crown-6 (DBC) in pure boron trifluoride diethyl etherate (BFEE). In this medium, the oxidation potential onset of DBC was measured to be only 0.98 V vs. SCE, which was much lower than that in acetonitrile + 0.1 mol L−1 Bu4NBF4 (1.45 V vs. SCE). PDBC films obtained from this medium showed good redox activity and stability in BFEE. The structural characterization of PDBC was performed using UV-vis, FTIR spectroscopy. The results of quantum chemistry calculations of DBC monomer and FTIR spectroscopy of PDBC films indicated that the polymerization mainly occurred at C(4) and C(5) positions). Fluorescent spectral studies indicated that PDBC was a blue light emitter. To the best of our knowledge, this is the first report on the electrodeposition of free-standing PDBC films.  相似文献   

2.
Free‐standing poly(dibenzofuran) (PDBF) films were synthesized electrochemically by direct anodic oxidation of dibenzofuran in mixed electrolytes of boron trifluoride diethyl etherate (BFEE) containing certain amount of trifluoroacetic acid (TFA). The oxidation potential of dibenzofuran in pure BFEE was measured to be only 1.31 V versus saturated calomel electrode (SCE). This value was much lower than that determined in acetonitrile + 0.1 mol L?1 TBATFB (2.14 V vs. SCE). The addition of TFA to BFEE can further decrease the oxidation potential of the monomer to 1.07 V versus SCE in the mixed electrolyte of BFEE + 30% TFA. PDBF films obtained from this medium showed good electrochemical behavior, good electrochromic properties, and good thermal stability with conductivity of 100 S cm?1. FTIR and 1H NMR spectra showed that the polymer was grown mainly via the coupling of the monomer at C(3) C(10) or C(4) C(9) positions (Scheme 1). As‐formed PDBF films were partly soluble in tetrahydrofuran (THF) or chloroform. Fluorescent spectral studies indicated that either soluble or PDBF in solid state was a good blue light PDBF emitter. To the best of our knowledge, this is the first report that free‐standing PDBF films can be electrodeposited. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1125–1135, 2006  相似文献   

3.
High‐quality poly(diphenyl ether) (PDPE) films with electrical conductivity of 4.4 × 10?1 S cm?1 were synthesized electrochemically by direct anodic oxidation of diphenyl ether (DPE) in boron trifluoride diethyl etherate (BFEE) containing 5% concentrated sulfuric acid (SA) (by volume). The oxidation potential onset of DPE in pure BFEE was measured to be only 1.37 V versus a saturated calomel electrode (SCE), which was much lower than that determined in acetonitrile + 0.1 mol L?1 tetrabutylammonium tetrafluoroborate (1.98 V vs. SCE). The addition of SA to BFEE can further decrease the oxidation potential onset of the monomer to 1.18 V versus SCE in the mixed electrolyte of BFEE + 5% SA. PDPE films obtained from this medium showed good redox activity and stability even in concentrated SA. Dedoped PDPE films were partly soluble in the strong polar organic solvent dimethyl sulfoxide. Fluorescent spectral studies indicated that soluble PDPE was a good blue‐light emitter with a quantum yield of 0.30. Infrared spectroscopy and quantum chemistry calculations indicated that the electropolymerization of DPE occurred mainly at C4 and C4′. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5932–5941, 2007  相似文献   

4.
Wang  Zhen  Lai  Cunyuan  Lu  Baoyang  Guo  Wenjuan  Yue  Ruirui  Pei  Meishan  Xu  Jingkun 《Journal of Solid State Electrochemistry》2012,16(5):1907-1915
Bromo-group-substituted oligopyrene films were electrochemically synthesized by direct anodic oxidation of 1-bromopyrene (BrP) in boron trifluoride diethyl etherate (BFEE). The oxidation potential of BrP was measured to be approximately 0.52 V (vs. Ag/AgCl), which was much lower than that detected in a neutral electrolyte such as acetonitrile (1.2 V vs. Ag/AgCl) and CH2Cl2 (1.25 V vs. Ag/AgCl). Oligo(1-bromopyrene) (OBrP) films showed good redox activity in both BFEE and concentrated sulfuric acid. Fourier transform infrared spectroscopy, 1H NMR, and theoretical calculations showed that the electropolymerization of the BrP monomer mainly occurred at the C(3), C(6), and C(8) positions. As-formed OBrP was a typical blue light emitter with fluorescent quantum yields of 0.27, also emitted strong and bright blue photoluminescence at excitation of 365 nm UV light. Furthermore, the films were readily soluble in dimethyl sulfoxide, CH2Cl2, acetonitrile, and acetone. All these results indicate that the striking OBrP films have many potential applications in various fields, such as optoelectronic materials, DNA fluorescence probes, and electrochemical sensors.  相似文献   

5.
A novel semi-conducting polymer poly(9-bromophenanthrene) (P9BP) was synthesized electrochemically by direct anodic oxidation of it is monomer 9-bromophenanthrene (9BP) in boron trifluoride diethyl etherate (BFEE). The oxidation onset potential of 9BP in this medium was measured to be only 1.33 V vs. saturated calomel electrode (SCE). P9BP films obtained from BFEE showed good electrochemical behavior and nice thermal stability with electrical conductivity of 0.03 S cm−1. FTIR and 1H NMR spectra together with theoretical quantum chemistry calculations indicated that the P9BP was mainly grown via the coupling of the monomer at C3 and C6 positions. Furthermore, P9BP exhibited strong electrochromic nature from opaque green to light yellow between the doped and dedoped states on ITO electrode in solid state. Fluorescence spectral studies indicated that P9BP was a blue light emitter.  相似文献   

6.
A novel inherently conducting polymer, high‐quality polyphenanthrene (PPh) films were synthesized electrochemically by direct anodic oxidation of phenanthrene (Ph) in boron trifluoride diethyl etherate (BFEE) containing a certain amount of trifluoroacetic acid (TFA). The oxidation potential of Ph in this medium was measured to be only 0.63 V versus SCE, which was greatly lower than that determined in acetonitrile + 0.1 mol L?1 Bu4NBF4 (1.55 V vs. SCE). The electrolytes of BFEE containing TFA enable facile anodic oxidation of Ph monomer; however, similar oxidation using acetonitrile never produces such a polymeric material. PPh films obtained from this medium showed good redox activity and stability even in concentrated sulfuric acid. Dedoped PPh films were partly soluble in polar solvent such as CH2Cl2, acetone, tetrahydrofuran, and dimethyl sulfoxide. Fluorescent spectral studies indicate that PPh is a good blue‐light emitter. The structure and morphology of the polymer were studied by UV–vis spectroscopy, FTIR spectroscopy, 1H NMR spectroscopy, and scanning electron microscopy, respectively. The results of quantum chemistry calculations of Ph monomer and the spectroscopies of dedoped PPh indicated the polymerization mainly occurred at C(9) and C(10) positions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3929–3940, 2007  相似文献   

7.
High‐quality poly(9,9‐dichlorofluorene) (PDCF), a new part soluble polyfluorene derivative, was easily synthesized electrochemically by direct anodic oxidation of 9,9‐dichlorofluorene (DCF) in boron trifluoride diethyl etherate (BFEE) containing 15% (by volume) trifluoroacetic acid (TFA). It was hard for DCF to deposit on the electrode in neutral solvents such as CH3CN system. This methodology may help promotion of researches to reveal unknown properties and applications of polyfluorene materials. PDCF films with conductivity of 3.3 × 10?2 S cm?1 obtained from this media show good redox activity and thermal stability. The structure and morphology of the polymer were studied by UV–vis, FTIR, 1H NMR spectra, and scanning electron microscopy, respectively. The results of quantum chemistry calculations and the spectroscopies of dedoped PDCF indicate that the polymerization of DCF mainly occurs via C(2) and C(7) position. Fluorescent spectral studies indicate that PDCF film with high fluorescence quantum yields and photochemical stability is a novel green light emitter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1791–1799, 2010  相似文献   

8.
High‐quality free‐standing poly(1H‐benzo[g]indole) (PBIn) films were synthesized electrochemically by direct anodic oxidation of 1H‐benzo[g]indole (BIn) in boron trifluoride diethyl etherate. PBIn films obtained from this medium showed good electrochemical behavior and better thermal stability with a conductivity of 0.29 S cm?1. PBIn films with low band gap value (1.59 eV) were insoluble in acetone and tetrahydrofuran. The structure and morphology of the polymer were studied by UV–vis, FTIR, and scanning electron microscopy, respectively. The results of quantum chemistry calculations and the spectroscopies of dedoped PBIn indicate that the polymerization of BIn mainly occurs via C(2) and C(5) position. The polymer film was compact with regular nanoparticles on the surface. Fluorescent spectral studies indicate that solid‐state PBIn film is a good yellow‐light‐emitter. Thermal stability of PBIn film is higher than poly(indole‐6‐carboxylic acid), poly(5‐formylindole), and polyindole. To the best of our knowledge, this is the first report on the electrosynthesis of free‐standing polyindole derivatives as yellow‐light‐emitter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2730–2738  相似文献   

9.
High-quality poly(fluorene-9-acetic acid) (PFAA), a new soluble polyfluorene derivative, was synthesized electrochemically by direct anodic oxidation of fluorene-9-acetic acid (FAA) in boron trifluoride diethyl etherate (BFEE) containing a certain amount of trifluoroacetic acid (TFA). This electrolyte enables facile anodic oxidation of FAA monomer at lower potential (1.05 V vs. SCE). PFAA films with conductivity of 0.53 S cm−1 obtained from this medium showed better redox activity and thermal stability in relation to unsoluble poly(fluorene-9-carboxylic acid). Fluorescent spectral studies indicate that PFAA film with high fluorescence quantum yields and photochemical stability is a good blue-light emitter. The structure and morphology of the polymer were studied by UV–vis, FT-IR, 1H NMR spectra and scanning electron microscopy, respectively.  相似文献   

10.
High quality free-standing poly (3-(4-fluorophenyl)thiophene) (PFPT) films with conductivity of 10−1 S/cm were electrosynthesized in boron trifluoride diethyl etherate (BFEE) by direct anodic oxidation of the monomer 3-(4-fluorophenyl)thiophene (FPT) on stainless steel sheet. As-formed flexible and shiny PFPT films can be cut into various shapes by a knife or a pair of scissors. The structure, thermal stability and morphology of PFPT films were studied by FT-infrared, UV-vis, Raman spectroscopy thermogravimetric analysis and scanning electron microscopy, respectively.  相似文献   

11.
High quality poly(5-methylindole) (P5MeI) films, especially with good fluorescence properties, were synthesized electrochemically by direct anodic oxidation of 5-methylindole in boron trifluoride diethyl etherate (BFEE) containing additional 50% diethyl ether (EE) (by volume). The oxidation potential onset of 5-methylindole in this medium was measured to be only 0.84 V vs. SCE, which was much lower than that determined in acetonitrile + 0.1 mol L−1 TBATFB (1.08 V vs. SCE). P5MeI films obtained from this medium showed good electrochemical behavior and good thermal stability with conductivity of 10−2 S cm−1, indicating that BFEE was a better medium than acetonitrile for the electrosyntheses of P5MeI films. Dedoped P5MeI films were thoroughly soluble in strong polar solvent such as dimethyl sulfoxide (DMSO). 1H NMR spectroscopy and FT infrared spectrum of dedoped P5MeI films strongly suggested that the monomers were linked via the positions 2 and 3. Fluorescent spectral studies indicated that P5MeI was a good violet-blue light emitter with the excitation and emission wavelength of 310 nm and 418 nm, respectively. To the best of our knowledge, this is the first case that 5-methyl group substituted polyindole films with good fluorescence properties can be electrodeposited.  相似文献   

12.
Visible-light transparent high-quality substrate-supported poly(2,3-benzofuran) (PBF) film has been successfully electrosynthesized by direct anodic oxidation of 2,3-benzofuran on stainless steel sheet in boron trifluoride diethyl etherate (BFEE) containing 10% poly(ethylene glycol) (PEG) with molar mass of 400 (by volume). The oxidation potential of 2,3-benzofuran in this medium was measured to be only 1.0 V vs. SCE, which is lower than that determined in acetonitrile + 0.1 M Bu4NBF4 (1.2 V vs. SCE). The PBF films obtained in this media showed good electrochemical behaviors and good thermal stability with conductivity of 10−2 S cm−1, and the doping level of as-prepared PBF films was determined to be only 8.9%. The structure and morphology of the polymer were investigated by UV-vis, infrared spectroscopy and scanning electron microscopy (SEM), respectively. To the best of our knowledge, this is the first case for the syntheses of PBF films.  相似文献   

13.
In this paper, poly[poly(N-vinyl-carbazole)] (PPVK) films electrodeposited in tetrahydrofuran (THF) containing 12 % boron trifluoride diethyl etherate (BFEE) were studied as electrode active material for supercapacitors. The morphology and thermal property were characterized by SEM, atomic force microscopy (AFM), and thermogravimetry (TG), respectively. The electrochemical capacitive behaviors of the PPVK films were also investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The electrochemical results showed that the specific capacitance of PPVK films in CH3CN solution was about 126 mF cm?2 at 1.5 mA cm?2 and the capacitance retention was only 14.4 % after 1000 cycles. It was exciting to improve the specific capacitance up to 169.3 mF cm?2 at 1.5 mA cm?2 and to make the cyclic stability increase to 81.8 % capacitance retention after 5000 cycles when the equivalent BFEE was added into the CH3CN solution containing 0.05 M Bu4NBF4 electrolyte. These results clearly demonstrated that BFEE was an efficient promoter for the enhancement of the capacitance performance of PPVK films. Therefore, with the help of BFEE electrolyte, the PPVK films have potential application as capacitive materials in high-performance energy storage devices.  相似文献   

14.
A novel conducting polymer, high-quality poly(fluorene-9-carboxylic acid) (PFCA) film, was synthesized electrochemically by direct anodic oxidation of fluorene-9-carboxylic acid (FCA) in boron trifluoride diethyl etherate (BFEE) containing a certain amount of trifluoroacetic acid (TFA). PFCA films obtained from this media showed good redox activity and stability. Optical properties were studied by UV–vis and fluorescent spectroscopy. Fluorescent spectral studies indicate that solid PFCA film is a good blue-light emitter. To the best of knowledge, this is the first report on direct anodic oxidation of FCA.  相似文献   

15.
Polythieno[3,2-b]thiophene (PTT) was electrosynthesized by facile anodic oxidation of thieno[3,2-b]thiophene (TT) in three systems: boron trifluoride diethyl etherate (BFEE), acetonitrile (ACN), and dichloromethane solutions. The onset oxidation potential of TT in BFEE was determined to be 0.62?V vs. Ag/AgCl, which was much lower than those in ACN and dichloromethane solutions. PTT films exhibited excellent electrochemical property, high thermal stability, good redox activity, and stability. Free-standing PTT films with good mechanical property can be obtained from BFEE solution, whose structure and morphology were characterized by FT-IR, UV?Cvisible spectra, and scanning electron microscopy. With an electrical conductivity of 1.5?S?cm?1 and a Seebeck coefficient of 85???V?K?1 at 306?K, the as-prepared free-standing PTT films showed a certain thermoelectric property. The dimensionless figure-of-merit of PTT films was estimated to be 2.3?×?10?3 at 306?K, which was much higher than those of some organic thermoelectric materials reported previously. All these results indicated that PTT films may have potential applications in the thermoelectric field.  相似文献   

16.
High quality free-standing polyfluorene (PFe) films were synthesized electrochemically by direct anodic oxidation of fluorene in pure boron trifluoride diethyl etherate (BFEE) on stainless steel sheet. The oxidation potential of fluorene in this medium was measured to be only 1.1 V versus SCE, which was much lower than that determined in acetonitrile + 0.1 mol L−1 TBATFB. PFe films obtained from this medium showed good electrochemical behavior, good thermal stability with conductivity of 0.25 S cm−1, indicating that BFEE is a better medium than acetonitrile for the electrosyntheses of PFe films. FTIR and 1H NMR spectral investigations indicated that the polymerization of fluorene occurred mainly at 2, 7 position. As-formed PFe films can be partly dissolved in acetone, acetonitrile, tetrahydrofuran, etc.  相似文献   

17.
High quality poly(5-cyanoindole) (P5CI) films were electrosynthesized by direct anodic oxidation of 5-cyanoindole on stainless steel sheet in the mixed electrolytes of boron trifluoride diethyl etherate (BFEE) and diethyl ether (EE) (by volume 1:1) + 0,05 mol L^-1 Bu4NBF4. The film formed can be peeled off the electrode into freestanding films, The addition of EE into BFEE can improve the solubility of monomer. P5CI films obtained from this medium showed excellent electrochemical behavior with conductivity of 10^-2 S cm^-1, Structural studies showed that the polymerization of 5-cyanoindole occurred at the 2,3 position. As-formed P5CI films were thoroughly soluble in strong polar organic solvent dimethyl sulfoxide (DMSO) while partly soluble in tetrahydrofuran (THF) or acetone. Fluorescence spectral studies indicated that P5CI was a good blue-ight emitter.  相似文献   

18.
High‐quality poly(5‐nitroindole) (PNP) films were synthesized electrochemically by the direct anodic oxidation of 5‐nitroindole in boron trifluoride diethyl etherate (BFEE) containing additional 10% diethyl ether (EE) (by volume). The addition of EE to BFEE could improve the solubility of the monomer. The oxidation potential onset of 5‐nitroindole in this medium was measured to be only 1.04 V versus a saturated calomel electrode (SCE), which was much lower than that determined in acetonitrile and 0.1 mol L?1 tetrabutylammonium tetrafluoroborate (1.53 V vs SCE). PNP films obtained from this medium showed good electrochemical behavior and good thermal stability with a conductivity of 10?2 S cm?1; this indicated that BFEE containing 10% EE was a suitable medium for the electrosyntheses of PNP films. Structural studies showed that the polymerization of the 5‐nitroindole ring occurred at the 2,3‐position. As‐formed PNP films were thoroughly soluble in the strong polar organic solvent dimethyl sulfoxide and partly soluble in tetrahydrofuran or acetone. Fluorescent spectral studies indicated that PNP was a good green‐light emitter, with excitation and emission wavelengths of 420 and 550 nm, respectively. To the best of our knowledge, this is the first time that nitro‐group‐substituted high‐quality conducting polymer films have been electrodeposited. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3986–3997, 2005  相似文献   

19.
Direct anodic oxidation of 1,5-dihydroxynaphthalene (DHN), an important derivative of naphthalene, led to the formation of high-quality semiconducting poly(1,5-dihydroxynaphthalene) (PDHN) on stainless steel sheets in boron trifluoride diethyl etherate (BFEE). The onset oxidation potential of DHN in this medium was measured to be only 0.78 V vs. SCE, which was lower than that determined in traditional acetonitrile containing 0.1 mol/L tetrabutylammonium tetrafluoroborate (0.98 V vs. SCE). As-formed PDHN films showed good redox activity and stability, together with interesting electrochromic property from brown (doped) to yellow-green (dedoped). Structural characterization, including FTIR, 1H NMR, and quantum chemistry calculations, indicated that the polymerization of DHN probably occurred at C4 and C8 positions. Moreover, thermal analysis revealed that PDHN displayed better thermal stability than that synthesized by chemical method. The fluorescence spectral studies, together with the electrical tests, showed that PDHN was a good blue light-emitter (fluorescence quantum yield higher than 0.1) with an electrical conductivity of as high as 0.46 S/cm.  相似文献   

20.
Horseradish peroxidase (HRP) was immobilized into a new type of sol–gel-derived nano-sized tin oxide/gelatin composite film (SnO2 composite film) using a sol–gel film/enzyme/sol–gel film “sandwich” configuration. Direct electrochemistry and electrocatalysis of HRP incorporated into the composite films were investigated. HRP/SnO2 composite film exhibited a pair of stable and quasi-reversible cyclic voltammetric peaks for the HRP Fe(III)/HRP Fe(II) redox couple with a formal potential of about −0.25 V (vs. SCE) in a pH 6.0 phosphate buffer solution. The electron transfer between the enzyme and the underlying electrode was greatly enhanced in the microenvironment with nano-SnO2 particles and nanoporous structures. Morphologies and microstructures of the composite films and HRP/composite films were characterized with TEM, AFM. Electrochemical impedance spectroscopy (EIS) was also used to feature the HRP incorporated into composite films. FTIR and UV–Vis spectroscopy demonstrated that HRP in the composite film could retain its native secondary structure. With the advantages of organic–inorganic hybrid materials, the HRP/SnO2 composite film modified electrode displayed good stability and electrocatalytic activity to the reduction of H2O2, The apparent Michaelis-Menten constant was estimated to be 0.345 mM, indicating a high affinity of HRP entrapped into the composite film toward H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号