共查询到18条相似文献,搜索用时 62 毫秒
1.
通过表面引发原子转移自由基聚合(SI-ATRP)在聚对苯二甲酸乙二醇酯(PET)薄膜表面接枝聚苯乙烯-聚二甲基硅氧烷嵌段共聚物(PET-g-PS-b-PDMS),制备具有强疏水性表面的聚酯薄膜.利用X-射线光电子能谱仪(XPS),傅里叶变换红外光谱仪(FTIR/ATR),场发射扫描电镜(FESEM)对改性前后聚酯薄膜的表面组成、结构和形貌进行分析与表征;利用接触角测试仪和微生物黏附实验对比研究接枝改性前后PET薄膜的润湿性和对微生物黏附性的影响.结果表明,随反应时间延长,聚酯薄膜表面接枝量增加,水接触角增大.当接枝聚合反应时间为12 h,接枝密度可达0.72 mg/cm2,接触角达到126°,薄膜表面细菌黏附量也随之降到最低. 相似文献
2.
嵌段共聚物离聚体具有独特的形态和固体及溶液性质 ,在热塑性弹性体、极性材料与非极性材料共混相溶剂和粘度调节剂等领域具有十分广阔的应用前景 ,引起了人们的普遍关注 .文献报道较多的是聚苯乙烯 乙烯 丙烯[1] 、聚苯乙烯 乙烯 丁烯 苯乙烯[2 ] 、聚苯乙烯 异丁烯 苯乙烯[3 ] 等共聚物中 ,聚苯乙烯链段部分磺化后所得离聚体的合成与性质研究 .众所周知 ,含氟聚合物具有低表面能和高表面活性等特性 ,因而将含氟基团引入到嵌段共聚物离聚体中有望开发出一种新型的特殊功能材料 .原子转移自由基聚合 (ATRP)自 1 995年问世以来 ,已成功… 相似文献
3.
4.
含氟丙烯酸酯-苯乙烯共聚物的制备及其表面性能的研究 总被引:4,自引:0,他引:4
研究了聚合工艺、含氟丙烯酸酯类单体种类和用量、苯乙烯和自由基引发剂用量及硅烷偶联剂、催化剂等因素对含氟丙烯酸酯-乙烯共聚物表面性能的影响。结果表明:聚合工艺、含氟丙烯酸酯类单体种类和用量对共聚物表面的憎水性能有显著的影响;采用延时滴加含氟丙烯酸酯类单体可提高共聚物膜表面的憎水性;随含氟丙烯酸酯类单体侧链含氟烷基的链长和氟原子数及含氟单体用量的增加,共聚物水接触角增大,吸水率下降;共聚物薄膜的硬度则与含氟丙烯酸酯类单体中α-取代基、侧链含氟烷基的链长和用量、苯乙烯用量、引发剂浓度等相关;硅烷偶联剂和催化交联剂的加入可提高共聚物薄膜的强度。 相似文献
5.
对-氯甲基苯乙烯共聚物引发合成接枝共聚物 总被引:3,自引:1,他引:2
接枝共聚物含有性质差别很大的主链和支链,具有许多特殊的性质,因而一直是人们感兴趣的研究课题之一[1~5].原子转移自由基聚合(ATRP)[6,7]的问世,为接枝共聚物的合成提供了一条新的途径.本文用对-氯甲基苯乙烯和其它乙烯基单体自由基共聚. 相似文献
6.
通过在聚酯(PET)薄膜表面固定原子转移自由基聚合(ATRP)的引发基团,继而引发接枝聚N-异丙基丙烯酰胺(NIPAM),制备表面具有温度敏感性的聚酯薄膜.利用X射线光电子能谱仪(XPS),衰减全反射傅立叶变换红外光谱仪(FTIR/ATR),扫描电子显微镜(SEM)对接枝改性前后PET薄膜的表面组成,结构和形貌进行分析与表征;利用接触角测试仪对比研究接枝改性前后PET薄膜的表面性能;研究数据表明,随着反应时间的延长,接枝到PET薄膜表面PNIPAM的量在增加.当接枝聚合反应时间为16 h,接枝量达到0.239mg/cm2.表明SI-ATRP具有一定的"活性"特征;接枝PNIPAM改性后的PET薄膜表现出对温度的刺激响应性. 相似文献
7.
具有预期结构的苯乙烯与丙烯酸丁酯接枝共聚物的合成与表征 总被引:10,自引:0,他引:10
通过苯乙烯 (St)与 4 对氯甲基苯乙烯 (CMS)进行氮氧稳定自由基共聚合反应 ,合成了二元共聚物P(St co CMS) ,并以此共聚物引发丙烯酸丁酯进行原子转移自由基聚合 ,成功地合成了结构明晰的以聚苯乙烯为主链、聚丙烯酸丁酯为支链的接枝共聚物 ,研究了共聚合反应动力学 .P(St co CMS)和接枝共聚物的结构通过1 H NMR得到确认 ,并表征了接枝共聚物平均侧链数目和平均侧链长度 相似文献
8.
9.
10.
11.
原子转移自由基聚合合成甲基丙烯酸丁酯与丙烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究 总被引:19,自引:0,他引:19
通过原子转移聚合合成了大分子引发剂PBMA Br及系列含氟两嵌段共聚物P(BMA b FAEM) ,并利用1 H NMR、F EA、GPC、FTIR对其结构进行了表征 .所合成的含氟嵌段共聚物膜具有低临界表面张力 .本文通过接触角的测定研究了含氟两嵌段共聚物的憎水、憎油性能与共聚物的含氟量 ,热处理温度 ,热处理时间的关系 ,结果表明含氟嵌段PFAEM具有向空气 聚合物界面富集的倾向 ,在共聚物中引入含氟嵌段可以明显提高共聚物的憎水、憎油性 .当含氟嵌段达 7 6wt%时 ,临界表面张力 (γc =18 7mN m)已与聚四氟乙烯相当 (γc=18 5mN m) ,显示出明显的低表面能特征 相似文献
12.
为了增加开管毛细管柱(OTCC)的相比,提高分离效率,发展了表面引发原子转移自由基聚合法(SI-ATRP)制备葡萄糖聚合物修饰的开管毛细管柱。通过扫描电镜观察,该开管柱内壁上修饰了三维波浪状聚合物,明显增加了内壁比表面积和相比。在pH 3~11范围内,对含糖聚合物修饰的开管柱和空柱的电渗流进行了比较。修饰后开管柱的电渗流仅为空柱的1/2~1/3,且在pH 6~11范围内保持平稳。稳定的电渗流保证了分离的重复性和稳定性。用该开管毛细管柱成功实现了小分子混合物(苯丙氨酸、胸腺嘧啶、腺苷、鸟苷、5-溴尿嘧啶、水杨酸)以及蛋白质大分子(核糖核酸酶B、转铁蛋白和牛血清白蛋白)的有效分离,结果表明葡萄糖聚合物修饰的开管毛细管柱具有良好的重复性和稳定性。 相似文献
13.
以溴封端聚乙二醇单甲醚(MPEG-Br)为大分子引发剂,三(2-二甲氨基乙基)胺(Me6TREN)/溴化亚铜(CuBr)为催化体系,通过原子转移自由基聚合(ATRP)反应制备了不同嵌段比例且分子量分布较窄的光学活性聚乙二醇单甲醚嵌段聚(N-甲基丙烯酰-L-亮氨酸甲酯)(MPEG-b-PMALM)聚合物.以1H-NMR表征了其化学结构以及两嵌段的比例.通过热重分析(TGA)和示差扫描量热仪(DSC)研究了嵌段共聚物的热学性能.相对于单体的旋光度,共聚物在聚合过程中旋光度发生了反转,其旋光度的绝对值显著增加,且随着PMALM嵌段含量的增加而增加.圆二色谱法(CD)结果表明,嵌段共聚物分子主链形成了一种无规卷曲的二级构象结构,其光学活性亦随PMALM含量的增加而增强. 相似文献
14.
15.
采用大分子单体法合成了一系列聚苯乙烯接枝壬基酚聚氧乙烯 (PS g NPEO)两亲共聚物 ,采用溶液铸膜法将其在PET表面制膜 ,并利用扫描电子显微镜 (SEM) ,X射线光电子能谱 (XPS) ,衰减全反射红外光谱(ATR)和水接触角 (CA)等手段研究了共聚物组成、铸膜溶剂及浓度对共聚物膜表面形貌、组成及水浸润性能的影响 .结果表明 ,两亲接枝共聚物在不同条件下可形成规则的表面微孔 ,共聚物中NPEO含量越高 ,共聚物膜表面微孔孔径越大 ,对应的水接触角越小 .以THF为铸膜溶剂时 ,制膜浓度越大 ,共聚物膜表面微孔孔径越大 ,对应的水接触角越小 ;而以甲苯为溶剂时 ,制膜浓度对共聚物膜表面形貌影响不大 ,但水接触角要较THF体系显著降低 ,水接触角与浓度关系与THF体系相反 ,制膜浓度越大 ,对应的水接触角越大 .制膜浓度相同时 ,THF作溶剂 ,共聚物膜微孔较大 ,表面亲水组分含量较低 ;以甲苯为溶剂 ,微孔较密 ,表面亲水组分较高 . 相似文献
16.
以自制的侧基含溴的聚酰亚胺为大分子引发剂,2,2'-联吡啶/氯化亚铜为催化体系,通过原子转移自由基聚合(ATRP)反应,引发甲基丙烯酸三氟乙酯(TFEMA)和甲基丙烯酸2-(三甲基硅氧基)乙酯(HEMA-tms)共聚,制备了以聚酰亚胺为主链的分子刷,聚酰亚胺-接枝-聚(甲基丙烯酸三氟乙酯-共-甲基丙烯酸2-(三甲基硅氧基)乙酯),(PI-g-P(TFEMA-co-HEMA-tms)).对其中甲基丙烯酸2-(三甲基硅氧基)乙酯进行水解得到侧链含羟基的聚酰亚胺分子刷(PI-g-P(TFEMA-co-HEMA)),最后通过羟基与氯磷酸二乙酯反应,得到含亚磷酸酯基团的聚酰亚胺分子刷(PI-g-P(TFEMA-co-HEMA-P)).利用核磁共振氢谱(1H-NMR)、红外等方法,表征了所合成分子刷的结构.利用示差扫描量热法(DSC)、热失重分析(TGA)研究了聚合物分子刷的热性能.根据TGA计算出的分子刷组成与1H-NMR计算结果能较好的吻合. 相似文献
17.
聚丙烯表面接枝PNIPAAm膜Ⅰ.光接枝反应和表面形态结构研究 总被引:4,自引:0,他引:4
以氧杂蒽酮或二苯甲酮为引发剂 ,通过紫外光引发表面接枝聚合的方法在聚丙烯薄膜表面引入了具有温度敏感特性的聚异丙基丙烯酰胺 (PNIPAAm)接枝聚合物层 .提高紫外光强度和接枝反应温度均有利于接枝率增大 ,而单体浓度对接枝率的影响存在最佳值 ,为 0 1 8mol L .在引发剂预浸渍引发接枝和休眠基引发接枝这两种方式中 ,后者能够实现更高的接枝率 .红外光谱 (FTIR)、X射线光电子能谱化学分析 (ESCA)和扫描电子显微镜 (SEM)等对接枝层组成的表征结果证实了接枝层的存在 .在不同温度下 ,接枝膜的FTIR谱图中酰胺I带和酰胺II带特征吸收峰发生位移 ,表明它具有温度敏感特性 .同时 ,SEM研究发现由于接枝膜的温度敏感特性而导致的球状表面形态结构 相似文献
18.
Summary: The communication provides a novel and alternative route to generate chemically tethered binary polymer‐brush pattern through two‐step surface‐initiated atomic‐transfer radical polymerization (SI‐ATRP). Polymer brush‐1 was prepared by SI‐ATRP, passivated by a reaction with NaN3, and etched with UV irradiation through a transmission electron microscopy grid to create exposed sites for the subsequently attached initiator on which polymer brush‐2 was grown.