首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blood-oxygen level dependent signal changes in the visual cortex were investigated as a function of echo time with spin-echo and gradient-echo EPI at 1.5 T and 3 T. The linear relationship between the fractional signal change and the echo time was apparent in all cases. Relaxation rate changes determined from the slope of this linear relation agree with published values, intercept values extrapolated to an echo time of zero, however, were 0.66% to 1.0% with spin-echo EPI, and 0.11% to 0.35% with gradient-echo EPI. Spin-echo and gradient-echo EPI can therefore yield similar signal changes at sufficiently short echo times.  相似文献   

2.
Functional MRI of motor and sensory activation in the human spinal cord   总被引:6,自引:0,他引:6  
MR imaging of the cervical spinal cord was carried out on volunteers during alternated rest and either motor or sensory stimulation of one hand, in order to detect image intensity changes arising concomitant to neuronal activity. We employed both spin-echo and gradient-echo echo-planar imaging, on the right and left hands, with both symmetric and asymmetric temporal patterns of rest and stimulation. Intensity changes correlated with the time course of stimulation were consistently detected, and the magnitude of the intensity changes depended on the duration of stimulation. The activated regions in the spinal cord extended along a column on the side of the body being stimulated and included localized regions on the contralateral side, in agreement with the neural anatomy.  相似文献   

3.
Objectives: This study aimed to investigate anatomical changes in the brain following chronic complete traumatic thoracic spinal cord injury (ThSCI) using voxel-based morphometry (VBM). That is, it attempted to examine dynamic physical change following thoracic injury and the presence or absence of regions with decreased and increased changes in whole brain volume associated with change in the manner of how activities of daily living are performed. Methods: Twelve individuals with chronic traumatic complete ThSCI (age; 21-63 years, American Spinal Injury Association Impairment Scale; grade C-D) participated in this study. VBM was used to investigate the regions with increased volume and decreased volume in the brain in comparison with healthy control individuals. Results: Decreases in volume were noted in areas associated with motor and somatosensory functions, including the right paracentral lobule (PCL)―the primary motor sensory area for lower limbs, left dorsal premotor cortex, and left superior parietal lobule (SPL). Furthermore, increased gray matter volume was noted in the primary sensorimotor area for fingers and arms, as well as in higher sensory areas. Conclusions: Following SCI both regions with increased volume and regions with decreased volume were present in the brain in accordance with changes in physical function. Using longitudinal observation, anatomical changes in the brain may be used to determine the rehabilitation effect by comparing present cases with cases with cervical SCI or cases with incomplete palsy.  相似文献   

4.
Currently, it is assumed that the pharmacokinetic properties of the first minutes of an I.V. MR contrast media bolus are similar to those of an i.v. iodinated contrast media bolus used in CT. Correct timing of an MRA examination is crucial for obtaining sufficient arterial contrast. This study sought to evaluate the temporal change of arterial signal intensity within 150 s after i.v. bolus injection of Gd-DTPA. Thirty consecutive patients (14 women/16 men; mean age: 51 +/- 11 years) were prospectively examined with a 1.0 Tesla clinical scanner. A single axial slice was acquired in 1.25 sec with manufacturer provided gradient echo sequence through the aorta at the level of the renal arteries. Investigation was started simultaneously to the application of contrast media (0.1 mmol/kg bodyweight Gd-DTPA at three different rates 2 mL/sec, 3 mL/sec and 4 mL/sec) and repeated for 2.5 min. An additional echo Doppler examination excluded patients with any cardiac disorders. Maximum signal (1300% increase compared to the basic value) in the aorta was achieved 20 +/- 6 sec after start of bolus injection. Then a plateau phase was maintained for the remaining investigation time (2.5 min). No significant difference was shown for different injection rates. After a bolus injection of Gd-DTPA the arterial contrast remains on a high level for at least 2 min. However, correct timing of the bolus arrival is still crucial to discriminate arteries and veins. An injection rate between 2 mL/sec and 4 mL/sec has no influence on early contrast media dynamics.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.  相似文献   

6.
Although event-related fMRI is able to reliably detect brief changes in brain activity and is now widely used throughout systems and cognitive neuroscience, there have been no previous reports of event-related spinal cord fMRI. This is likely attributable to the various technical challenges associated with spinal fMRI (e.g., imaging a suitable length of the cord, reducing image artifacts from the vertebrae and intervertebral discs, and dealing with physiological noise from spinal cord motion). However, with many of these issues now resolved, the largest remaining impediment for event-related spinal fMRI is a deprived understanding of the spinal cord fMRI signal time course. Therefore, in this study, we used a proton density-weighted HASTE sequence, with functional contrast based on signal enhancement by extravascular water protons (SEEP), and a motion-compensating GLM analysis to (i) characterize the SEEP response function in the human cervical spinal cord and (ii) demonstrate the feasibility of event-related spinal fMRI. This was achieved by applying very brief (1 s) epochs of 22°C thermal stimulation to the palm of the hand and measuring the impulse response function. Our results suggest that the spinal cord SEEP response (time to peak ≈8 s; FWHM ≈4 s; and probably lacking pre- and poststimulus undershoots) is slower than previous estimates of SEEP or BOLD responses in the brain, but faster than previously reported spinal cord BOLD responses. Finally, by detecting and mapping consistent signal-intensity changes within and across subjects, and validating these regions with a block-designed experiment, this study represents the first successful demonstration of event-related spinal fMRI.  相似文献   

7.
Quantitative mapping of the effective transverse relaxation time, T2* and proton density was performed in a motor activation functional MRI (fMRI) study using multi-echo, echo planar imaging (EPI) and NumART2* (Numerical Algorithm for Real time T2*). Comparisons between NumART2* and conventional single echo EPI with an echo time of 64 ms were performed for five healthy participants examined twice. Simulations were also performed to address specific issues associated with the two techniques, such as echo time-dependent signal variation. While the single echo contrast varied with the baseline T2* value, relative changes in T2* remained unaffected. Statistical analysis of the T2* maps yielded fMRI activation patterns with an improved statistical detection relative to conventional EPI but with less activated voxels, suggesting that NumART2* has superior spatial specificity. Two effects, inflow and dephasing, that may explain this finding were investigated. Particularly, a statistically significant increase in proton density was found in a brain area that was detected as activated by conventional EPI but not by NumART2* while no such changes were observed in brain areas that showed stimulus correlated signal changes on T2* maps.  相似文献   

8.
The (1)H NMR water signal from spectroscopic voxels localized in gray matter contains contributions from tissue and cerebral spinal fluid (CSF). A typically weak CSF signal at short echo times makes separating the tissue and CSF spin-lattice relaxation times (T(1)) difficult, often yielding poor precision in a bi-exponential relaxation model. Simulations show that reducing the variables in the T(1) model by using known signal intensity values significantly improves the precision of the T(1) measurement. The method was validated on studies on eight healthy subjects (four males and four females, mean age 21 +/- 2 years) through a total of twenty-four spectroscopic relaxation studies. Each study included both T(1) and spin-spin relaxation (T(2)) experiments. All volumes were localized along the Sylvian fissure using a stimulated echo localization technique with a mixing time of 10 ms. The T(2) experiment consisted of 16 stimulated echo acquisitions ranging from a minimum echo time (TE) of 20 ms to a maximum of 1000 ms, with a repetition time of 12 s. All T(1) experiments consisted of 16 stimulated echo acquisition, using a homospoil saturation recovery technique with a minimum recovery time of 50 ms and a maximum 12 s. The results of the T(2) measurements provided the signal intensity values used in the bi-exponential T(1) model. The mean T(1) values when the signal intensities were constrained by the T(2) results were 1055.4 ms +/- 7.4% for tissue and 5393.5 ms +/- 59% for CSF. When the signal intensities remained free variables in the model, the mean T(1) values were 1085 ms +/- 19.4% and 5038.8 ms +/- 113.0% for tissue and CSF, respectively. The resulting improvement in precision allows the water tissue T(1) value to be included in the spectroscopic characterization of brain tissue.  相似文献   

9.
High-resolution segmented EPI in a motor task fMRI study   总被引:3,自引:0,他引:3  
A high-resolution gradient echo, multi-slice segmented echo planar imaging method was used for functional MRI (fMRI) using a motor task at 1.5 Tesla. Functional images with an in-plane resolution of 1 mm and slice thickness of 4 mm were obtained with good white-gray matter contrast. The multi-shot approach, combined with a short total readout period of 82 ms, limits blurring effects for short T(2)(*) tissues (such as gray matter), assuring truly high-resolution images. In all subjects, motor functions were clearly depicted in the contralateral central sulcus over several slices and sometimes activation was detected in the supplementary motor area and/or ipsilateral central sulcus. The average signal change of 11+/-3% was much higher than in standard low-resolution fMRI EPI experiments, as a result of larger relative blood fractions.  相似文献   

10.
Relaxation effects in the quantification of fat using gradient echo imaging   总被引:4,自引:0,他引:4  
Quantification of fat has been investigated using images acquired from multiple gradient echoes. The evolution of the signal with echo time and flip angle was measured in phantoms of known fat and water composition and in 21 research subjects with fatty liver. Data were compared to different models of the signal equation, in which each model makes different assumptions about the T1 and/or T2* relaxation effects. A range of T1, T2*, fat fraction and number of echoes was investigated to cover situations of relevance to clinical imaging. Results indicate that quantification is most accurate at low flip angles (to minimize T1 effects) with a small number of echoes (to minimize spectral broadening effects). At short echo times, the spectral broadening effects manifest as a short apparent T2 for the fat component.  相似文献   

11.

Background  

Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.  相似文献   

12.
13.
In vivo diffusion tensor imaging of rat spinal cord at 7 T   总被引:3,自引:0,他引:3  
In vivo diffusion tensor imaging of normal rat spinal cord was performed using a multi-segmented, blipped EPI sequence at 7 T field strength. At high diffusion weighting, the signal exhibited a non-monoexponential decay that was fitted to a biexponential function, associated with the fast and slow components of diffusion in the cord tissue, using a nonlinear regression analysis along with a constrained optimization procedure. From the measured tensors, the eigenvalues and the maps of invariant scalar measures (fractional anisotropy, relative anisotropy, volume ratio, and trace) were calculated and analyzed statistically. The results were combined to quantitatively characterize the anisotropic properties of the fast and slow diffusions in white- and gray matter of live spinal cords.  相似文献   

14.

Background  

Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation.  相似文献   

15.
Forty-one patients with suspected cervical spine disorders were studied using multislice gradient echo imaging (GE) technique, with a 1.5-T system. The images were compared to cardiac-gated spin echo (CGSE) images in the diagnosis of suspected cord and spinal disorders. Images were graded for ability to detect cord lesion, cord-CSF contrast, CSF-bone contrast and contrast between CSF and extradural abnormality. The signal-to-noise ratio and contrast-to-noise ratio were used to compare images. There was 44% decrease in contrast between cord lesion and normal cord on GE when compared to CGSE, except for spinal cord hemorrhage. There was a 40% improvement between bone and CSF contrast on GE compared to CGSE. GE images were significantly better qualitatively as well as quantitatively in the detection of extradural lesions. This effect was more marked in axial plane where CGSE images are extremely suboptimal. CGSE images are better than GE for spinal cord lesions, while GE are superior in the diagnosis of degenerative disease in the cervical spine.  相似文献   

16.
Perceptions of sensation and pain in healthy people are believed to be the net result of sensory input and descending modulation from brainstem and cortical regions depending on emotional and cognitive factors. Here, the influence of attention on neural activity in the spinal cord during thermal sensory stimulation of the hand was investigated with functional magnetic resonance imaging by systematically varying the participants' attention focus across and within repeated studies. Attention states included (1) attention to the stimulus by rating the sensation and (2) attention away from the stimulus by performing various mental tasks of watching a movie and identifying characters, detecting the direction of coherently moving dots within a randomly moving visual field and answering mentally-challenging questions. Functional MRI results spanning the cervical spinal cord and brainstem consistently demonstrated that the attention state had a significant influence on the activity detected in the cervical spinal cord, as well as in brainstem regions involved with the descending analgesia system. These findings have important implications for the detection and study of pain, and improved characterization of the effects of injury or disease.  相似文献   

17.
Evaluation of the muscular system with magnetic resonance (MR) was conducted: (1) to assess the capability of MR to depict muscular abnormalities; (2) to evaluate the ability of MR to discriminate between various types of muscular pathologies based on relaxation parameters; and (3) to determine the optimal spin echo (SE) sequence that produced optimal contrast. Retrospective analysis was performed on 59 consecutive patients with a variety of muscular abnormalities. MR muscle analysis included visual inspection of contour and size; muscle intensity changes in relation to various TR/TE combinations; measurement of T1 and T2 relaxation and spin density; and calculation of percent contrast variation with different SE imaging combinations. Contour and size abnormalities were not reliable for detection of muscular pathology. For each individual subject intensity and relaxation times of all muscles involved by pathology differed from normal muscle. Although all pathologies caused increase in signal intensity of muscle, the alterations in relaxation times were variable. Fatty atrophy caused a decrease in T1 and increase in T2; while post-surgical changes, infection, acute intramuscular hemorrhage, and tumor invasion caused an increase in both T1 and T2. Percent contrast indicated that the optimum sequence for evaluation of fatty atrophy was a short (0.5 sec) repetition time (TR) and echo delay time (TE) of 56 msec, while for demonstration of the remaining muscular abnormalities, including post-surgical changes, infection, acute intramuscular hemorrhage, and tumor invasion, a long TR (TR = 2.0 sec) and TE (56 msec) was optimal. Differentiation between various benign and malignant muscular abnormalities (excluding fatty atrophy) was not possible using either quantitative intensity values or relaxation times.  相似文献   

18.
The purpose of this study was to investigate the effect of parameter changes that can potentially lead to unreliable measurements in fat quantification. Chemical shift imaging was performed using spoiled gradient echo sequences with systematic variations in the following: two-dimensional/three-dimensional sequence, number of echoes, delta echo time, fractional echo factor, slice thickness, repetition time, flip angle, bandwidth, matrix size, flow compensation and field strength. Results indicated no significant (or significant but small) changes in fat fraction with parameter. The significant changes can be attributed to the known effects of T1 bias and two forms of noise bias.  相似文献   

19.
Magnetic resonance imaging (MRI) has recently been applied to study spinal cord function in humans. However, spinal functional MRI (fMRI) encounters major technical challenges with cardiac noise being considered a major source of noise. The present study relied on echo-planar imaging of the cervical cord at short TR (TR=250 ms; TE=40 ms; flip=45 degrees), combined with plethysmographic recordings to characterize the spatiotemporal properties of cardiac-induced signal changes in spinal fMRI. Frequency-based analyses examining signal change at the cardiac frequency confirmed mean fluctuations of about 10% (relative to the mean signal) in the spinal cord and surrounding cerebrospinal fluid (CSF), with maximal responses reaching up to 66% in some voxels. A spatial independent component analysis (sICA) confirmed that cardiac noise is an important source of variance in spinal fMRI with several components showing a response coherent with the cardiac frequency spectrum. The time course of the main cardiac components approximated a sinusoidal function tightly coupled to the cardiac systole with at least one component showing a comparable temporal profile across runs and subjects. Spatially, both the frequency-domain analysis and the sICA demonstrated cardiac noise distributed irregularly along the full rostrocaudal extent of the segments scanned with peaks concentrated in the ventral part of the lateral slices in all scans and subjects, consistent with the major channels of CSF flow. These results confirm that cardiac-induced changes are a significant source of noise likely to affect the detection of spinal Blood Oxygen Level Dependent (BOLD) responses. Most importantly, the complex spatiotemporal structure of cardiac noise is unlikely to be accounted for adequately by ad hoc linear methods, especially in data acquired using long TR (i.e. aliasing the cardiac frequency). However, the reliable spatiotemporal distribution of cardiac noise across scanning runs and within subjects may provide a valid means to identify and extract cardiac noise based on sICA methods.  相似文献   

20.
Magnetic resonance images of the femorotibial joints of male Dunkin-Hartley guinea pigs were obtained in two and three dimensions at 2.35 T using a wide range of T1- and T2-weighted imaging sequences. The effect of slice position on visualisation of articular cartilage, bone and periarticular tissues in sagittal and coronal sections was investigated along with the resolution and signal/noise ratio achievable. Based on that survey, a two-dimensional spin echo sequence (repetition time = 1500 ms, echo time = 40 ms) was found to give optimum visualisation of the normal joint anatomy with in-plane resolution of 75 × 150 μm and a 1 mm slice thickness in an imaging time of 25 min. This protocol was also found to be highly effective in distinguishing many features of the spontaneous, osteoarthritic-like pathology found in the joints of older animals compared to juveniles and therefore provides a means of monitoring disease progression longitudinally. Three-dimensional spin echo imaging methods demonstrated focal changes in signal intensity in the articular cartilage of the medial tibial plateau in older animals. The resulting imaging times of several hours, however, precludes their routine use in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号