首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Reactions of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz) with solvated first-row transition metals M(II) (M(II) = Ni, Zn, Mn, Fe, Cu) have been explored with emphasis on the factors that influence the identity of the resulting cyclic products for Ni(II) and Zn(II). The relatively small anions, namely [ClO4]- and [BF4]-, lead to the formation of molecular squares [{M4(bptz)4(CH3CN)8} subsetX][X]7, (M = Zn(II), Ni(II); X = [BF4]-, [ClO4]-), whereas the larger anion [SbF6]- favors the molecular pentagon [{Ni5(bptz)5-(CH3CN)10} subsetSbF6][SbF6]9. The molecular pentagon easily converts to the square in the presence of excess [BF4]-, [ClO4]-, and [I]- anions, whereas the Ni(II) square can be partially converted to the less stable pentagon under more forcing conditions in the presence of excess [SbF6]- ions. No evidence for the molecular square being in equilibrium with the pentagon was observed in the ESI-MS spectra of the individual square and pentagon samples. Anion-exchange reactions of the encapsulated ion in [{Ni4(bptz)4(CH3CN)8} subsetClO4][ClO4]7 reveal that a larger anion such as [IO4]- cannot replace [ClO4]- inside the cavity, but that the linear [Br3]- anion is capable of doing so. ESI-MS studies of the reaction between [Ni(CH3CN)6][NO3]2 and bptz indicate that the product is trinuclear. Mass spectral studies of the bptz reactions with Mn(II), Fe(II), and Cu(II), in the presence of [ClO4]- anions, support the presence of molecular squares. The formation of the various metallacyclophanes is discussed in light of the factors that influence these self-assembly reactions, such as choice of metal ion, anion, and solvent.  相似文献   

2.
An anion is encapsulated in the center of the new cage compound [Ni6(atu)8X]X3 (X=Cl—for the structure see picture—or Br; Hatu=amidinothiourea). A combination of Lewis acid–base and hydrogen-bonding interactions cause the square-planar [Ni(Hatu)2]2+ units, after deprotonation, to assemble to form this compound. A remarkable feature is the anion dependence of the cage formation; nitrate, acetate, and perchlorate are unsuitable as templates.  相似文献   

3.
The reaction of Cu(ClO4)2. 6H2O with t-BuP(O)(OH)2 and 3,5-(CF3)2PzH in the presence of triethylamine afforded the dodecanuclear cage ([Et3NH]2[Cu12(mu-3,5-(CF3)2Pz)6(mu3-OH)6(mu-OH)3(mu3-t-BuPO3)2(mu6-t-BuPO3)3][t-BuPO2OH][C6H5CH3]2) (2). The molecular structure of this cage revealed that it possesses a barrel-shaped architechture. The cage structure is built by the cumulative coordination action of phosphonate, hydroxide, and pyrazolyl ligands. A similar reaction involving Cu(NO3)2. 3H2O, t-BuP(O)(OH)2, 3,5-dimethylpyrazole, and triethylamine afforded another dodecanuclear cage [Cu12(mu-DMPz)8(eta1-DMPzH)2(mu4-O)2(mu3-OH)4(mu3- t-BuPO3)4].3MeOH (3). The latter is crown-shaped and is built by the coordination of pyrazole, pyrazolyl, phosphonate, hydroxide, oxide, and methanol ligands. Both of the dodecanuclear cages are efficient nucleases in the presence of magnesium monoperoxyphthalate.  相似文献   

4.
The synthesis and structural characterisation of three small nickel(II) cages are reported, all stabilised by pivalate ligands. The magnetic properties of the cages have been studied by a combination of susceptibility measurements and inelastic neutron scattering. For a dinuclear cage, [Ni2(mu-OH2)(O2CCMe3)4(HO2CCMe3)4] 1 the ground state is S=2, with a ferromagnetic exchange interaction between the Ni(II) centres of J=0.32 meV and D(S=2)=-0.09 meV in the ground state. For a tetranuclear heterocubane cage, [Ni4(mu(3)-OMe)4(O2CCMe3)4(MeOH)4] 2, two ferromagnetic exchange interactions are found and an S=4 ground state observed. While the zero-field splitting of this state cannot be determined unambigiously the most likely value is DS=4=-0.035 meV. For a tetranuclear nickel butterfly, [Ni4(mu3-OH)2(O2CCMe3)6(EtOH)6] 3, three exchange interactions are required, two anti-ferromagnetic and one weakly ferromagnetic; the resulting ground state is S=0. The data enable us to estimate the zero-field splitting of single Ni(II) ions involved in the cage as Di=+1.0 meV. Both and are therefore expected to be new single molecule magnets.  相似文献   

5.
The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT.  相似文献   

6.
Reaction of hydrated Zn[NO3]2 or Zn[BF4]2 with four or more equivalents of 3{5}-tert-butylpyrazole (L(tBu)) yields [Zn(L(tBu))4]X2 (X- = NO3- or BF4-). The nitrate complex contains C2-symmetric four-coordinate zinc(II) centers with a slightly flattened tetrahedral geometry, and each nitrate anion hydrogen bonds to two pyrazole N-H groups. Similar reactions with Zn[ClO4]2 or ZnCl2 in the presence of 2 equiv of AgPF6 or AgSbF6 yield instead [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 and [{Zn(L(tBu))4}(L(tBu))2]Y2 (Y- = PF6- or SbF6-). Crystals of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 are composed of discrete [{Zn(L(tBu))4}(L(tBu))4]2+ supramolecules that are formed from N-H...N hydrogen bonding between zinc-bound and uncoordinated pyrazole rings. The [{Zn(L(tBu))4}(L(tBu))4]2+ moieties are linked into planar 4(4) nets by hydrogen bonding to bridging ClO4- anions. The ClO4- ions are almost perfectly encapsulated in near-spherical cavities of approximate dimensions 5.0 x 5.0 x 4.5 A that are formed by two interlocked supramolecular dications. Similarly, [{Zn(L(tBu))4}(L(tBu))2][PF6]2 crystallizes as discrete supramolecules in the crystal with the PF6- anions occupying a shallow bowl-shaped cavity on the surface of the complex that is formed by two zinc-bound and one uncoordinated pyrazole ligands. (1)H NMR and IR studies of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 in CD2Cl2 imply that the second-sphere L(tBu) ligands dissociate from the [Zn(L(tBu))4]2+ center in this solvent and that free and metal-bound L(tBu) are in rapid chemical exchange.  相似文献   

7.
1 INTRODUCTION 8-Quinolinolate is a very useful ligand and used to synthesize many complexes with special physical properties. For example, the complex tris(8-quinoli- nolate)aluminum(III) displays distinguished physical property in the area of electroluminescence ma- terials[1]. Based on tris(8-quinolinolate)aluminum(III), high-luminance low-voltage driven devices have been made, which opens the route to design low-cost large area displays and illuminators. The crystals thatcontain com…  相似文献   

8.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

9.
A centered icosahedral 12-coordinate samarium cluster formed by six bis(L-prolinato)nickel(II) ([Ni(pro)2]) ligands, [Sm(Ni(pro)2)6]3+, was prepared. The reaction of Sm with [Ni(pro)2] in a small excess (a 2-fold excess) and also in a large excess (even a 10-fold excess) of the latter produced the cluster. Therefore, this system is a self-assembly. In the cluster, each nickel atom is surrounded by six atoms: two amino nitrogens, two carboxylate oxygens which form chelate rings with the nitrogen atoms, and two carboxylate oxygen atoms which link the neighboring nickel atoms. The samarium atom is coordinated by six [Ni(pro)2] ligands, and the metal is in an icosahedral environment formed by 12 oxygen atoms. The icosahedral geometry is almost ideal. Crystals of [Sm(Ni(pro)2)6](ClO4)3.6MeOH, which were prepared from a methanol solution, immediately decompose after filtration because of loosely trapped MeOH molecules in the crystal lattice. Therefore, crystals without MeOH molecules, which must be stable, were prepared by recrystallization from acetonitrile with tetramethylammonium perchlorate (TMAP). According to the X-ray crystal analysis, the cluster is TMA[Sm(Ni(pro)2)6](ClO4)4, cubic of space group F23, with a = 21.273(9) A, V = 9626(1) A3, and Z = 4; R = 0.053 (Rw = 0.049) for 1296 reflections. In addition, several crystals of cluster salts that have different counteranions, i.e., tetrafluoroborate (BF4-), hexafluorophosphate (PF6-), iodide (I-), and nitrate (NO3-), were prepared. The order of increasing ease of crystallization of the cluster salts was I- > PF6- approximately ClO4- > BF4- > NO3-. The cluster structure is retained in alcohol and acetonitrile solutions; the UV-vis spectra of the solutions are perfectly consistent with the powder diffuse reflection spectrum. Cyclic voltammograms of [Sm(Ni(pro)2)6]3+ in acetonitrile proved that the structure of [Sm(Ni(pro)2)6]3+ is retained in the redox process and that the nickel atoms electrochemically interact with one another. Thermal analysis of the cluster salts with different counteranions was investigated. The results imply that the cluster is very stable until bis(L-prolinato)nickel(II) ligands, which form the cage structure, disintegrate and that the thermal decomposition processes of the cluster salts depend on their counteranions.  相似文献   

10.
用荧光光谱法和紫外-可见吸收光谱法研究了含N,N-二(2-苯并咪唑甲基)亚胺单核镍(Ⅱ)配合物与小牛胸腺DNA(ct-DNA)作用的机理。结果表明,随着ct-DNA浓度的增加,配合物表现较强的荧光增强作用,且在不同的温度下荧光增强常数Ks随温度的升高而降低,表明配合物与ct-DNA的作用机理是静态增强过程。根据双对数方程计算出了不同温度下的结合常数K和结合位点数n。稳态荧光猝灭及溴化乙锭(EB)竞争取代实验研究表明配合物与ct-DNA可能以嵌插方式结合。吸收光谱表明配合物增加了DNA双螺旋结构的稳定性。  相似文献   

11.
The tetradentate ligand L(naph) contains two N-donor bidentate pyrazolyl-pyridine units connected to a 1,8-naphthyl core via methylene spacers; L45 and L56 are chiral ligands with a structure similar to that of L(naph) but bearing pinene groups fused to either C4 and C5 or C5 and C6 of the terminal pyridyl rings. The complexes [Cu(L(naph))](OTf) and [Ag(L(naph))](BF4) have unremarkable mononuclear structures, with Cu(I) being four-coordinate and Ag(I) being two-coordinate with two additional weak interactions (i.e., "2 + 2" coordinate). In contrast, [Cu4(L(naph))4][BF4]4 is a cyclic tetranuclear helicate with a tetrafluoroborate anion in the central cavity, formed by an anion-templating effect; electrospray mass spectrometry (ESMS) spectra show the presence of other cyclic oligomers in solution. The chiral ligands show comparable behavior, with [Cu(L45)](BF4) and [Ag(L45)](ClO4) having similar mononuclear crystal structures and with the ligands being tetradentate chelates. In contrast, [Ag4(L56)4](BF4)4 is a cyclic tetranuclear helicate in which both diastereomers of the complex are present in the crystal; the two diastereomers have similar gross geometries but are significantly different in detail. Despite their different crystal structures, [Ag(L45)](ClO4) and [Ag4(L56)4](BF4)4 behave similarly in solution according to ESMS studies, with a range of cyclic oligomers (up to Ag9L9) forming. With transition-metal dications Co(II), Cu(II), and Cd(II), L(naph) generates a series of unusual dodecanuclear coordination cages [M12(L(naph))18]X24 (X- = ClO4- or BF4-) in which the 12 metal ions occupy the vertices of a truncated tetrahedron and a bridging ligand spans each of the 18 edges. The central cavity of each cage can accommodate four counterions, and each cage molecule is chiral, with all 12 metal trischelates being homochiral; the crystals are racemic. Extensive aromatic stacking between ligands around the periphery of the cages appears to be a significant factor in their assembly. The chiral analogue L45 forms the simpler tetranuclear, tetrahedral coordination cage [Zn4(L45)6](ClO4)(8), with one anion in the central cavity; the steric bulk of the pinene chiral auxiliaries prevents the formation of a dodecanuclear cage, although trace amounts of [Zn12(L45)18](ClO4)24 can be detected in solution by ESMS. Formation of [Zn4(L45)6](ClO4)8 is diastereoselective, with the chirality of the pinene groups controlling the chirality of the tetranuclear cage.  相似文献   

12.
采用紫外-可见光谱和荧光光谱滴定方法研究了钌(II)配合物[Ru(bpy)(H2iip)2](ClO4)2 [bpy=2,2’-联吡啶, H2iip=2-吲哚基-咪唑并[4,5-f][1,10]-邻菲罗啉]在DMSO溶液中对卤素离子的识别性质. 结果表明该配合物能比色和荧光双重光谱高选择性识别F-.  相似文献   

13.
Pseudoelement Compounds VII. [1] Crystal and Molecular Structure of Tris(ethylenediamine)nickel(II)-bis(2-methyl-4-chlorophenoxy-cyanamidoacetate) Surprisingly, in the presence of ethylenediamine 2-methyl-4-chlorphenoxy-cyanamidoactetate reacts with nickel(II) and copper(II) ions preferentially under formation of complexes of the type [M(en)3]X2. The IR spectra and the X-ray diffraction investigations corresponding to [Ni(en)3][2-Me-ClC6H3OCH2C(O)NCN]2 show that two cyanamidocarboxylate ions [RC(O)NCN]? are bonded to the complex cation through, in each case, two N? H …? O?C hydrogen bonds between NH protons of ethylenediamine ligands and the carbonyl oxygen atoms. Additionally, in the crystal weak N? H …? N?C bridges were found between the nitrile nitrogen atoms of the anions and NH protons of neighbouring complex cations.  相似文献   

14.
Wu B  Yuan D  Lou B  Han L  Liu C  Zhang C  Hong M 《Inorganic chemistry》2005,44(25):9175-9184
The reactions of cobalt(II) halides and flexible ligand L [L=1,3-bis(pyrid-4-ylthio)propan-2-one] under different conditions generated a series of complexes with various structural motifs ranging from tetragonal-prismatic cages to 1-3D coordination polymers. The layer diffusion of cobalt(II) chloride and L in methanol/acetone at 25 degrees C gave rise to a 3D polymer, [Co(L)2Cl2].Me2CO. At 30 degrees C, the slow diffusion of diethyl ether into the blue dimethylformamide (DMF) solution of complex 1 afforded a 1D polymer, Co(L)Cl2(DMF)2. However, at 10 degrees C, the diffusion of diethyl ether into the DMF solution of complex 1 produced a tetragonal-prismatic cage, [Co2(L)4Cl2]Cl2.Et2O.DMF.2MeOH.4H2O. The reaction of cobalt(II) bromide and L in DMF at 10 degrees C yielded a dimer, [Co2(L)4Br2]Br2.6DMF.2H2O, with a cage structure similar to. The preparation of the series of compounds indicates the subtle relationship between structures and tunable reaction conditions. It is also found that the structural motifs vary according to the ligand conformations and that the formation of tetragonal-prismatic cages and may be templated by anionic guests. Magnetic studies on complexes in a temperature range 4-300 K disclose that L is unfavorable for a long-range magnetic interaction; however, intramolecular spin-coupling constants of -19.6 and -21.5 cm-1 for and indicate rather strong magnetic superexchanges arising from the overlap of the dz2 orbitals of the cobalt(II) and pz orbitals of the encapsulated halide anions. Electron paramagnetic resonance (EPR) spectra of complexes 3 and 4 in solution and solid give information that both complexes are high-spin cobalt(II) compounds with a rhombic distortion of the axial zero-field splitting. Interestingly, the intramolecular magnetic-exchange coupling in 3 and 4 mediated by the encapsulated anion Cl- or Br- is also reflected by the EPR spectra.  相似文献   

15.
采用紫外-可见光谱和荧光光谱滴定方法研究了钌(Ⅱ)配合物[Ru(bpy)(H2iip)2](ClO4)2[bpy=2,2'-联吡啶,H2iip=2-吲哚基-咪唑并[4,5-f][1,10]-邻菲罗啉]在DMSO溶液中对卤素离子的识别性质.结果表明该配合物能比色和荧光双重光谱高选择性识别F-.  相似文献   

16.
The title compound [Fe (II)(L) 2][ClO 4] 2.C 7H 8 (L = 2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine) has been isolated while attempting to grow single crystals of the spin-transition (continuous-type) compound [Fe (II)(L) 2][ClO 4] 2, published earlier ( Dalton Trans. 2003, 3392-3397). Magnetic susceptibility measurements, as well as Mossbauer and calorimetric investigations on polycrystalline samples of [Fe(L) 2][ClO 4] 2.C 7H 8 revealed the occurrence of an abrupt HS ( (5) T 2) <--> LS ( (1) A 1) transition with steep and narrow (2 K) hysteresis at approximately 232 K. The photomagnetic properties exhibit features typical for a broad distribution of activation energies, with relaxation curves in the shape of stretched exponentials. We performed a crystal structure determination of the compound at 120, 240, and 270 K. A noteworthy temperature-dependent behavior of the structural parameters was observed, in terms of disorder of both the anions and solvent molecules, leading to a strong thermal dependence of the strength and dimensionality of the interaction network. Additional data were obtained by diffuse reflectance measurements. We model and discuss the antagonistic effects of interactions and disorder by using a two-level cooperative mean-field approach which includes a distribution of barrier energies at the microscopic scale.  相似文献   

17.
Reduction of 1,12-closo-C2B10H12 followed by reaction with the appropriate metal halide and metathesis with either [K(18-crown-6)]Br or [BTMA]Cl ([BTMA] = [C6H5CH2N(CH3)3]+) affords isolable salts of the supraicosahedral metallacarborane sandwich anions [4,4-M-(1,10-closo-C2B10H12)2]n- in moderate to good yield. Compounds prepared are [BTMA][4,4-Co-(1,10-closo-C2B10H12)2] ( 1), [K(18-crown-6)][4,4-Co-(1,10-closo-C2B10H12)2] ( 2), [K(18-crown-6)]2[4,4-Ni-(1,10-closo-C2B10H12)2] ( 3), [K(18-crown-6)]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 4), [BTMA]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 5) and [K(18-crown-6)]2[4,4-Ti-(1,10-closo-C2B10H12)2] ( 6). Oxidation of the iron(II) species 4 and 5 with FeCl3 in THF generates the iron(III) analogues [K(18-crown-6)][4,4-Fe-(1,10-closo-C2B10H12)2] ( 7) and [BTMA][4,4-Fe-(1,10-closo-C2B10H12)2] ( 8), respectively. All diamagnetic compounds were characterised spectroscopically and the structures of 1, 3, 4, 6, 7 and 8 were established by single crystal X-ray diffraction. All anions have the anticipated cluster structures with two docosahedral 13-vertex cages joined at the central metal atom (the common degree-six vertex 4). Carbon atoms occupy the degree-four vertex 1 and the degree-five vertex 10. 11B NMR spectroscopy suggests the anions have, on the NMR timescale, C2h symmetry in solution at room temperature, consistent with free rotation, or at least substantial libration, of cage units about the long molecular axis. In the solid state the relative conformations of the two cages may be rationalised by simple bonding arguments, the single exception being the conformation of 4, in which both cages are subject to directional B-H...K+ interactions to the [K(18-crown-6)]+ counterion. The salts 3, 6 and 7 also show B-H...K+ interactions but involving one cage only.  相似文献   

18.
Zheng LL  Zhang WX  Qin LJ  Leng JD  Lu JX  Tong ML 《Inorganic chemistry》2007,46(23):9548-9557
A neutral pentadentate ligand, di(pyrazolecarbimido)amine (Hdcadpz), and its adduct with HClO4, [H2dcadpz]+[ClO4]-, were for the first time isolated from our previously reported [Cu3(dcadpz)2(Hpz)2(ClO4)2](ClO4)2.H2O by the use of (NH4)2S to remove the CuII ions and characterized by IR, EA, UV, NMR, MS, and X-ray crystallography. Reactions of copper(II) or nickel(II) nitrate with Hdcadpz in a 1:2 molar ratio generated two mononuclear precursors of [Cu(dcadpz)2] (1) and [Ni(dcadpz)2].2/3DMF (2). Furthermore, three new linear homo- and heterotrinuclear complexes of the same motif [M{M'(dcadpz)2}M] (M=CoII, NiII, M'=CuII, NiII), [{Co(pdm)}2{Cu(dcadpz)2}](NO3)4 (3), [{Ni(pdm)}2{Cu(dcadpz)2}](NO3)4 (4), and [{Ni(MeOH)(H2O)2}2{Ni(dcadpz)2}](NO3)4 (5), were synthesized from these two precursors (pdm=2,6-pyridinedimethanol) and characterized by X-ray crystallography. Magnetic studies show that the central Cu(dcadpz)2 motif is antiferromagnetically coupled with both the terminal Co(II) atoms via the dcadpz- ligand in 3 with a J value of -5.27 cm(-1) and ferromagnetically coupled with both the terminal Ni(II) atoms in 4 with a J value of 2.50 cm(-1), while 5 behaves only as a Curie paramagnet between 2 and 300 K due to the diamagnetic character of the central square-planar Ni(II) atom.  相似文献   

19.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   

20.
The three novel heterotrimetallic complexes [Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2(NCS)2 (1), [Ni(H2L)2][CuCo(L)2(H2L)(NCS)]2Br2.2H2O (2), and [CuCoCd(H2L)2(L)2(NCS)Br2].CH3OH (3) have been prepared using zerovalent copper; cobalt thiocyanate; nickel thiocyanate (1), nickel bromide (2), or cadmium bromide (3); and methanol solutions of diethanolamine in air. The most prominent feature of the structures of 1 and 2 is the formation of the "pentanuclear"aggregate [[Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2]2+ made up of two neutral [CoCu(L)2(H2L)(NCS)] units and the previously unknown cation [Ni(H2L)2]2+ "glued together" by strong complementary hydrogen bonds. With Cd2+ instead of Ni2+, a different structure is obtained: the [CoCu(L)2(H2L)(NCS)] unit is now linked to the Cd center through coordination of the oxygens of L groups on the Co atom to form the discrete heterotrimetallic molecular species 3. Cryomagnetic measurements of the compounds show that, in all cases, the magnetic behavior is paramagnetic; the polycrystalline EPR spectra contain signals due to monomeric copper species only. At the same time, the EPR spectra of frozen DMF and methanol solutions of 1-3 reveal the presence of triplet-state species that can be generated only by a coupling of the Cu2+ centers within a dimer. The species responsible for the appearance of transitions within the triplet state are thought to be Cu(II) dimeric centers formed by aggregation of two [CuCo(H2L)(L)2] fragments of 1-3 present in solution. The residual monomeric spectra in the g approximately 2 region are indicative of the existence of an equilibrium in solution between the dimeric and monomeric Cu(II) centers in aggregated and free [CuCo(H2L)(L)2] fragments, respectively, with varying degrees of stability. The fragmentation process of 1-3 in solution was screened by electrospray ionization mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号