首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (1 0 0) substrates. The electrical resistance of the films was monitored in situ during growth. The coalescence thickness was determined for various growth temperatures and found to increase from 1.1 nm for films grown at room temperature to 3.3 nm for films grown at 400 °C. A continuous film was formed at a thickness of 2.9 nm at room temperature and 7.5 nm at 400 °C. The room temperature electrical resistivity decreases with increased growth temperature, while the in-plain grain size and the surface roughness, measured with a scanning tunneling microscope (STM), increase. Furthermore, the temperature dependence of the film electrical resistance was explored at various stages during growth.  相似文献   

2.
Al/Au multilayers (average composition Al2Au, individual layer thicknesses 1 nm Al and 0.71 nm Au) are prepared at 90 K by ion beam sputtering. The electrical resistance of the growing films is monitored in situ. From the results obtained in this way it can be concluded that interface reactions occur transforming the ultrathin layers into an amorphous phase, which is stable up to 255 K.For larger individual layer thicknesses (2.1 nm Au and 3 nm Al), the interface reaction into the amorphous state is incomplete. Based on a simple parallel-resistor model, one finds that the interface reaction into the amorphous phase is restricted to a thickness of less than 3.5 nm. The temperature dependence of the resistance of such thicker multilayers indicates the onset of interdiffusion of the yet unreacted material at T=200 K resulting in the crystalline Al2Au-phase.  相似文献   

3.
Results for the temperature coefficient of resistivity (TCR) of polycrystalline bismuth films deposited on to glass substrate are reported for the thickness range 30–300 nm. The film TCR is found to be negative for all thicknesses studied and its absolute value exhibits a maximum of 3.70×10–3 K–1 near 72.5 nm. The variation of charge carrier density with film thickness has been estimated from the presence of surface states. To include the thickness dependence of charge carrier density, a modified theory has been used to explain the observed behaviour of the TCR. The experimental results for the TCR of Bi films are found to be consistent with the theoretical values. The existence of the extremum is theoretically verified. From the analysis, the specularity parameter p is about 0.44 and the reflection coefficient R is 0.1.  相似文献   

4.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

5.
Different thickness of polycrystalline ZnTe films have been deposited onto glass substrates at room temperature by vacuum evaporation technique. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a zinc blende (cubic) structure. The calculated microstructure parameters revealed that the crystallite size increases and microstrain decreases with increasing film thickness. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 400-2500 nm. For ZnTe films of different thicknesses, the dependence of absorption coefficient, α on the photon energy showed the occurrence of a direct transition with band gap energy (For ZnTe films of different thicknesses) confirming the independency of deduced energy gap on film thickness. The refractive indices have been evaluated in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. It was observed that the refractive index, n increased upon increasing the film thickness up to 508 nm, lying within the experimental error for further increases in film thickness.  相似文献   

6.
用直流磁控溅射技术在石英基片上制备不同厚度(5nm~114nm之间)的铬膜.使用X射线衍射仪和分光光度计分别检测薄膜的结构和光学性质,利用德鲁特模型和薄膜的透射、反射光谱计算铬膜的厚度和光学常量,并采用Van der Pauw方法测量薄膜电学性质.结果表明:制备的铬薄膜为体心立方的多晶态,随着膜厚的增加,薄膜的结晶性能提高,晶粒尺寸增大;在可见光区域,当膜厚小于32nm时,随着膜厚的增加,折射率快速减小,消光系数快速增大,当膜厚大于32nm时,折射率和消光系数均缓慢减小并逐渐趋于稳定;薄膜电阻率随膜厚的增加为一次指数衰减.  相似文献   

7.
用直流磁控溅射技术在石英基片上制备不同厚度(5 nm~114 nm之间)的铬膜.使用X射线衍射仪和分光光度计分别检测薄膜的结构和光学性质,利用德鲁特模型和薄膜的透射、反射光谱计算铬膜的厚度和光学常量,并采用Van der Pauw方法测量薄膜电学性质.结果表明:制备的铬薄膜为体心立方的多晶态,随着膜厚的增加,薄膜的结晶性能提高,晶粒尺寸增大;在可见光区域,当膜厚小于32 nm时,随着膜厚的增加,折射率快速减小,消光系数快速增大,当膜厚大于32 nm时,折射率和消光系数均缓慢减小并逐渐趋于稳定;薄膜电阻率随膜厚的增加为一次指数衰减.  相似文献   

8.
Metallic superlattices of copper and manganese have been synthesized on glass and mica substrates by a sequential evaporation technique. The electrical resistivity and the temperature coefficient of resistance (TCR) of layered Cu/Mn has been studied for various thicknesses (d) in the range 2–6 nm by varying the number of double layers (n) from 5–35. The transition from a negative to positive TCR has been observed ford >5 nm. The thickness dependence of room temperature resistivity ( RT) and TCR shows oscillatory behaviour.  相似文献   

9.
The thickness dependence of the electronic conductivity of thin (5–150 nm) single-crystal (100) films of refractory metals is investigated at different temperatures ranging from 4.2 K to room temperature. Regions of square-root, quasilinear, and quadratic dependences are observed. The quasilinear thickness dependence is explained by the influence of quantum effects on the transverse motion of electrons in the case when electron scattering by the film surfaces dominates. For macroscopic film thicknesses 30–50 nm, much greater than the Fermi wavelength of an electron, quantum corrections to the electronic conductivity reach values of the order of 50%. This is a consequence of the quantum size effect for grazing electrons, which leads to an anomaly in electron scattering by the film surfaces. The region of the quadratic thickness dependence corresponds to the quantum limit, and the square-root region corresponds to the classical limit. The effect is explained in a quasiclassical two-parameter model (the effective angle α* for small-angle electrons and the parameter γ, equal to the ratio of this angle to the diffraction angle) that takes into account the diffraction angular limits for grazing electrons. The effect occurs for parameters α*≪1 and γ∼1 and differs from the “ordinary” quantum size effect. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 11, 693–698 (10 December 1997)  相似文献   

10.
Pentacene thin films with thicknesses ranging from 10 nm to 180 nm are investigated by specular X-ray diffraction in the reflectivity regime and in the wide angular regime. The results of the reflectivity measurements show a clear shift of the 001 reflection of the thin film phase depending on the layer thickness. It is shown that this shift can be explained by the dynamical scattering theory. The wide angular regime measurements show the 00L of the thin film phase. Williams-Hall plots are used to extract information on the crystallite size and mean micro strain of the thin film phase. The crystallite size is in good agreement with the results obtained by the reflectivity measurements. From this it can be concluded that the thin film phase crystallites are extended over the entire film thickness down to the substrate. Additionally an increase of the micro strain with increasing film thickness is observed.  相似文献   

11.
The process of melting with consequent disintegration into droplets of various thickness Au thin films has been studied. An unexpected character of the melting–disintegration temperature dependence on thin-film thickness has been found: a reduction of the process temperature has been observed with thickness in the range from 100 to 20 nm; however, the disintegration temperature starts to increase for Au film thicknesses lower than 20 nm. It is supposed that the observed non-monotonic behavior of the process temperature is caused by the influence of the substrate interaction with the film, resulting in an entropy change of the system.  相似文献   

12.
We have fabricated sandwich SNS (superconductor/normal metal/superconductor) junctions using in-situ grown c-axis oriented YBaCuO/PrBaCuO/YBaCuO trilayers. We observe supercurrents for PrBaCuO thicknesses up to 130 nm at 4.2 K. To confirm or rule out the presence of shorts through the barrier, the junction behaviour has been further characterised. Magnetic-field and PrBaCuO thickness dependences of the critical current, as well as a correct scaling with the junction area of both the critical current and the normal resistance, appear to indicate a reasonable uniformity for the barriers on the scale of the size of the junctions, typically 10 μm. These results suggest that either we are observing real c-axis transport in PrBaCuO or, if the behaviour is defect dominated, that the criteria commonly used to demonstrate good device behaviour should be applied carefully. The temperature dependence of the junction critical current and normal resistance are also reported and compared.  相似文献   

13.
An apparatus is described, which enables us to measure the thicknesses of films immediately after condensation at low temperatures and in different stages of annealing by means of a multiple beam interferometry technique (Tolansky). The film thicknesses are also measured by the temperature dependence of the electrical resistance. Measurements of Pb- and Cu-films are given as an example, and the sources of errors are discussed. In the case of Pb-films both the methods give the same thicknesses at any condensation temperature. This leads to the conclusion that Pb-films have a density of the compact material. At low condensation temperatures the disorder in the films turns out to be thickness dependent, and the distribution of defects seems to be inhomogeneous. Cu-films condense at low temperatures with high porosity. This may be the cause of the often observed getter effect of freshly condensed Cu-films. The filling factor of Cu-films is studied at different condensation temperatures. The temperature dependence of the resistivity of thin metallic films is discussed in the appendix of this paper.  相似文献   

14.
In this paper we report on the influence of film thickness on the electrical and gas-sensing properties of tin oxide thin films grown by atomic layer deposition (ALD) technique. The nature of the carrier and post-flow gases used in ALD was found to have a dramatic influence on the electrical conductance of the deposited films. Up to a film thickness of 50 nm the sheet conductance of the films increased with the thickness, and above 50 nm the sheet conductance was not significantly influenced by the film thickness. This effect was attributed to oxygen depletion at the film surface. When the depth of oxygen depletion (d dep) was greater than or equal to the film thickness (t), the sheet conductance was thickness dependant. On the other hand, when d dept, the sheet conductance was independent of the film thickness but depended on the depth of the oxygen depletion. This proposed explanation was verified by subjecting the films to different lengths of post-annealing in an oxygen depleted atmosphere. Gas-sensing functionality of the films with various thicknesses was examined. It was observed that the film thickness had a significant influence on the gas-sensing property of the films. When the thickness was greater than 40 nm, the sensitivity of the films to ethanol was found to follow the widely reported trend, i.e., the sensitivity decreases when the film thickness increases. Below the film thickness of 40 nm the sensitivity decreases as film thickness decreases, and we propose a model to explain this observation based on the increase in resistance due to multiple grain boundaries.  相似文献   

15.
Growth and the optical properties of epitaxial heterostructures Si(111)/(CrSi2 nanocrystallites)/Si(111) based on nanosized islands of chromium disilicide (CrSi2) on Si(111) were studied using low-energy electron diffraction, atomic-force microscopy, and optical reflection and transmission spectroscopy. The heterostructures with thicknesses of 0.1, 0.3, 0.6, 1.0, and 1.5 nm were formed by reactive epitaxy at a temperature of 500°C followed by the epitaxial growth of silicon at 750°C. The specific features of changes in the density and sizes of CrSi2 islands on the silicon surface were determined at T = 750°C as the chromium layer thickness was increased. It was established that, in the heterostructures with chromium layer thicknesses exceeding 0.6 nm, a small part of faceted Cr2Si2 nanocrystallites (NCs) emerge into near-surface region of the silicon, which is confirmed by the data from optical reflectance spectroscopy and an analysis of the spectral dependence of the absorption coefficient. A critical size of NCs is shown to exist above which their shift to the silicon surface is hampered. The decreased density of emerging NCs at chromium layer thicknesses of 1.0–1.5 nm is associated with the formation of coarser NCs within a silicon layer, which is confirmed by the data from differential reflection spectroscopy.  相似文献   

16.
The influence of the quantum size effect (QSE) in very thin Pd and Au films (0.5<d<10 [nm]) deposited on glass tips is studied by means of field emission at various anode potentials. The thickness-dependent field emission current characteristics show short periodic variations with a period of about 0.3 nm for both Pd and Au. The measured QSE oscillations and their amplitudes differ strongly from those expected qualitatively from model calculations for the smallest thicknesses. A model for the metal film based on a modification of the uniform background model is presented, and the thickness dependence of the conductance and the field emission current density are qualitatively discussed. Possible explanations of some discrepancies between calculations and the measured field emission current characteristics are proposed.  相似文献   

17.
Cobalt ferrite thin films of different thicknesses were pulsed-laser deposited onto a fused quartz substrate held at ambient temperature (RT) by varying deposition time. The samples were ex-situ annealed at 750°C in air for 2 hours. All the films were characterized by X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The spontaneous magnetization, 4πM S , was found to be 6130 G for the 50 nm thick sample, and this is higher than that for the bulk cobalt ferrite of 5300 G, by 16%. The 4πM S was found to decrease with the increase in film thickness and an overall decrease of 32% was observed, when the film thickness increased from 50 nm to 600 nm. In contrast the films of the same thicknesses, when deposited at substrate temperature of 750°C showed an increase of 4πM S with the increase in film thickness. The thickness dependence of 4πM S in these nanocrystalline thin films has been explained in terms of the cation distribution and the grain size, which are sensitive to the substrate temperature during deposition.  相似文献   

18.
La0.8Sr0.2MnO3 (LSMO) films were prepared on LaAlO3 substrates by excimer laser metal organic deposition (ELMOD) at 500 °C. The temperature dependence of resistance of the LSMO films was investigated by changing the laser fluence, irradiation time, and film thickness. It was found that the resistance of the LSMO films 80 nm in thickness that were irradiated by an ArF laser at a fluence of 100 mJ/cm2 for 60 min showed a metallic temperature dependence, and the maximum temperature coefficient of resistance of the films (defined as 1/R×dR/dT) was 3.4% at 265 K. PACS 81.15.-z; 81.15.Fg; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

19.
The electronic structure of thin films NdNiO3/NdGaO3 with various thicknesses (from 17 nm to 150 nm), have been studied by photoemission spectroscopy at 300 K and 169 K. The XPS results are consistent with the literature ab initio calculations of the NdNiO3 electronic structure. A noticeable variation attributed to the metal-insulator (MI) transition has been found only for the films with relatively high thickness (150 nm). Furthermore, the photoemission spectra and their temperature dependence have been discussed with regard to the results of dc electrical resistivity measurements which also exhibit large thickness dependence. Finally, these new results support a possible large hetero-epitaxial effect on the thinnest sample (17 nm) which could stress the NdNiO3 structure and consequently makes its electronic structure nearly stabilized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号