首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

2.
The paper concerns investigations of holomorphic functions of several complex variables with a factorization of their Temljakov transform. Firstly, there were considered some inclusions between the families \(\mathcal {C}_{\mathcal {G}},\mathcal {M}_{\mathcal {G}},\mathcal {N}_{\mathcal {G}},\mathcal {R}_{\mathcal {G}},\mathcal {V}_{\mathcal {G}}\) of such holomorphic functions on complete n-circular domain \(\mathcal {G}\) of \(\mathbb {C}^{n}\) in some papers of Bavrin, Fukui, Higuchi, Michiwaki. A motivation of our investigations is a condensation of the mentioned inclusions by some new families of Bavrin’s type. Hence we consider some families \(\mathcal {K}_{ \mathcal {G}}^{k},k\ge 2,\) of holomorphic functions f :  \(\mathcal {G}\rightarrow \mathbb {C},f(0)=1,\) defined also by a factorization of \( \mathcal {L}f\) onto factors from \(\mathcal {C}_{\mathcal {G}}\) and \(\mathcal {M} _{\mathcal {G}}.\) We present some interesting properties and extremal problems on \(\mathcal {K}_{\mathcal {G}}^{k}\).  相似文献   

3.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

4.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

5.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

6.
Let \({\widetilde{H}}_N\), \(N \ge 1\), be the point-to-point last passage times of directed percolation on rectangles \([(1,1), ([\gamma N], N)]\) in \({\mathbb {N}}\times {\mathbb {N}}\) over exponential or geometric independent random variables, rescaled to converge to the Tracy–Widom distribution. It is proved that for some \(\alpha _{\sup } >0\),
$$\begin{aligned} \alpha _{\sup } \, \le \, \limsup _{N \rightarrow \infty } \frac{{\widetilde{H}}_N}{(\log \log N)^{2/3}} \, \le \, \Big ( \frac{3}{4} \Big )^{2/3} \end{aligned}$$
with probability one, and that \(\alpha _{\sup } = \big ( \frac{3}{4} \big )^{2/3}\) provided a commonly believed tail bound holds. The result is in contrast with the normalization \((\log N)^{2/3}\) for the largest eigenvalue of a GUE matrix recently put forward by E. Paquette and O. Zeitouni. The proof relies on sharp tail bounds and superadditivity, close to the standard law of the iterated logarithm. A weaker result on the liminf with speed \((\log \log N)^{1/3}\) is also discussed.
  相似文献   

7.
Let \((X_{n}^{\ast})\) be an independent identically distributed random sequence. Let \(M_{n}^{\ast}\) and \(m_{n}^{\ast}\) denote, respectively, the maximum and minimum of \(\{X_{1}^{\ast},\cdots,X_{n}^{\ast}\}\). Suppose that some of the random variables \(X_1^{\ast},X_2^{\ast},\cdots\) can be observed and let \(\widetilde{M}_n^{\ast}\) and \(\widetilde{m}_n^{\ast}\) denote, respectively, the maximum and minimum of the observed random variables from the set \(\{X_1^{\ast},\cdots,X_n^{\ast}\}\). In this paper, we consider the asymptotic joint limiting distribution and the almost sure limit theorems related to the random vector \((\widetilde{M}_n^{\ast}, \widetilde{m}_n^{\ast}, M_n^{\ast}, m_n^{\ast})\). The results are extended to weakly dependent stationary Gaussian sequences.  相似文献   

8.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

9.
Let \({\mathcal{T}}\) be a triangular algebra over a commutative ring \({\mathcal{R}}\), \({\xi}\) be an automorphism of \({\mathcal{T}}\) and \({\mathcal{Z}_{\xi}(\mathcal{T})}\) be the \({\xi}\)-center of \({\mathcal{T}}\). Suppose that \({\mathfrak{q}\colon \mathcal{T}\times \mathcal{T}\longrightarrow \mathcal{T}}\) is an \({\mathcal{R}}\)-bilinear mapping and that \({\mathfrak{T}_{\mathfrak{q}}\colon \mathcal{T}\longrightarrow \mathcal{T}}\) is a trace of \({\mathfrak{q}}\). The aim of this article is to describe the form of \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the commuting condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}\) (resp. the centralizing condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}\in \mathcal{Z}_\xi(\mathcal{T})}\)) for all \({x\in \mathcal{T}}\). More precisely, we will consider the question of when \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the previous condition has the so-called proper form.  相似文献   

10.
As a generalization of completely regular semigroups, which can be written as \({\mathcal{(G \circ RB) \circ S}}\) where \({\mathcal{G}}\), \({\mathcal{RB}}\) and \({\mathcal S}\) are the varieties of groups, rectangular bands and semilattices, respectively, we have replaced \({\mathcal G}\) by the class \({\mathcal M}\) of monoids. This calls for finding the structure of such semigroups, and, as a first step, characterizations.  相似文献   

11.
We provide a streamlined construction of the Friedrichs extension of a densely-defined self-adjoint and semibounded operator A on a Hilbert space \(\mathcal {H}\), by means of a symmetric pair of operators. A symmetric pair is comprised of densely defined operators \(J: \mathcal {H}_1 \rightarrow \mathcal {H}_2\) and \(K: \mathcal {H}_2 \rightarrow \mathcal {H}_1\) which are compatible in a certain sense. With the appropriate definitions of \(\mathcal {H}_1\) and J in terms of A and \(\mathcal {H}\), we show that \((\textit{JJ}^\star )^{-1}\) is the Friedrichs extension of A. Furthermore, we use related ideas (including the notion of unbounded containment) to construct a generalization of the construction of the Krein extension of A as laid out in a previous paper of the authors. These results are applied to the study of the graph Laplacian on infinite networks, in relation to the Hilbert spaces \(\ell ^2(G)\) and \(\mathcal {H}_{\mathcal {E}}\) (the energy space).  相似文献   

12.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

13.
We show that certain representations over fields with positive characteristic of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image. In particular, we obtain rigidity results for representations of the following groups: the special linear group over \({\mathbb {Z}}\), \({\mathrm{SL}}_k({\mathbb {Z}})\), the special automorphism group of a free group, \(\mathrm{SAut}(F_k)\), the mapping class group of a closed orientable surface, \(\mathrm{Mod}(\Sigma _g)\), and many other groups. In the case of characteristic zero, we show that low dimensional complex representations of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image if they always have compact closure.  相似文献   

14.
Let \(\mathcal {C}\subset \mathbb {Q}^p_+\) be a rational cone. An affine semigroup \(S\subset \mathcal {C}\) is a \(\mathcal {C}\)-semigroup whenever \((\mathcal {C}\setminus S)\cap \mathbb {N}^p\) has only a finite number of elements. In this work, we study the tree of \(\mathcal {C}\)-semigroups, give a method to generate it and study the \(\mathcal {C}\)-semigroups with minimal embedding dimension. We extend Wilf’s conjecture for numerical semigroups to \(\mathcal {C}\)-semigroups and give some families of \(\mathcal {C}\)-semigroups fulfilling the extended conjecture. Other conjectures formulated for numerical semigroups are also studied for \(\mathcal {C}\)-semigroups.  相似文献   

15.
For fixed real numbers \(c>0,\)\(\alpha >-\frac{1}{2},\) the finite Hankel transform operator, denoted by \(\mathcal {H}_c^{\alpha }\) is given by the integral operator defined on \(L^2(0,1)\) with kernel \(K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(cxy).\) To the operator \(\mathcal {H}_c^{\alpha },\) we associate a positive, self-adjoint compact integral operator \(\mathcal Q_c^{\alpha }=c\, \mathcal {H}_c^{\alpha }\, \mathcal {H}_c^{\alpha }.\) Note that the integral operators \(\mathcal {H}_c^{\alpha }\) and \(\mathcal Q_c^{\alpha }\) commute with a Sturm-Liouville differential operator \(\mathcal D_c^{\alpha }.\) In this paper, we first give some useful estimates and bounds of the eigenfunctions \(\varphi ^{(\alpha )}_{n,c}\) of \(\mathcal H_c^{\alpha }\) or \(\mathcal Q_c^{\alpha }.\) These estimates and bounds are obtained by using some special techniques from the theory of Sturm-Liouville operators, that we apply to the differential operator \(\mathcal D_c^{\alpha }.\) If \((\mu _{n,\alpha }(c))_n\) and \(\lambda _{n,\alpha }(c)=c\, |\mu _{n,\alpha }(c)|^2\) denote the infinite and countable sequence of the eigenvalues of the operators \(\mathcal {H}_c^{(\alpha )}\) and \(\mathcal Q_c^{\alpha },\) arranged in the decreasing order of their magnitude, then we show an unexpected result that for a given integer \(n\ge 0,\)\(\lambda _{n,\alpha }(c)\) is decreasing with respect to the parameter \(\alpha .\) As a consequence, we show that for \(\alpha \ge \frac{1}{2},\) the \(\lambda _{n,\alpha }(c)\) and the \(\mu _{n,\alpha }(c)\) have a super-exponential decay rate. Also, we give a lower decay rate of these eigenvalues. As it will be seen, the previous results are essential tools for the analysis of a spectral approximation scheme based on the eigenfunctions of the finite Hankel transform operator. Some numerical examples will be provided to illustrate the results of this work.  相似文献   

16.
We consider the quantum symmetric pair \((\mathcal {U}_{q}(\mathfrak {su}(3)), \mathcal {B})\) where \(\mathcal {B}\) is a right coideal subalgebra. We prove that all finite-dimensional irreducible representations of \(\mathcal {B}\) are weight representations and are characterised by their highest weight and dimension. We show that the restriction of a finite-dimensional irreducible representation of \(\mathcal {U}_{q}(\mathfrak {su}(3))\) to \(\mathcal {B}\) decomposes multiplicity free into irreducible representations of \(\mathcal {B}\). Furthermore we give explicit expressions for the highest weight vectors in this decomposition in terms of dual q-Krawtchouk polynomials.  相似文献   

17.
Let \(X=G/P\) be a real projective quadric, where \(G=O(p,\,q)\) and P is a parabolic subgroup of G. Let \((\pi _{\lambda ,\epsilon },\, \mathcal H_{\lambda ,\epsilon })_{ (\lambda ,\epsilon )\in {\mathbb {C}}\times \{\pm \}}\) be the family of (smooth) representations of G induced from the characters of P. For \((\lambda ,\, \epsilon ),\, (\mu ,\, \eta )\in {\mathbb {C}}\times \{\pm \},\) a differential operator \(\mathbf D_{(\mu ,\eta )}^\mathrm{reg}\) on \(X\times X,\) acting G-covariantly from \({\mathcal {H}}_{\lambda ,\epsilon } \otimes {\mathcal {H}}_{\mu , \eta }\) into \({\mathcal {H}}_{\lambda +1,-\epsilon } \otimes {\mathcal {H}}_{\mu +1, -\eta }\) is constructed.  相似文献   

18.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

19.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

20.
In this paper, influenced by the ideas from Mihail (Fixed Point Theory Appl 2015:15, 2015), we associate to every generalized iterated function system \(\mathcal {F}\) (of order m) an operator \(H_{\mathcal {F}}:\mathcal {C} ^{m}\rightarrow \mathcal {C}\), where \(\mathcal {C}\) stands for the space of continuous functions from the shift space on the metric space corresponding to the system. We provide sufficient conditions (on the constitutive functions of \(\mathcal {F}\)) for the operator \(H_{\mathcal {F}}\) to be continuous, contraction, \(\varphi \)-contraction, Meir–Keeler or contractive. We also give sufficient condition under which \(H_{\mathcal {F}}\) has a unique fixed point \(\pi _{0}\). Moreover, we prove that, under these circumstances, the closure of the imagine of \(\pi _{0}\) is the attractor of \(\mathcal {F}\) and that \(\pi _{0}\) is the canonical projection associated with \(\mathcal {F}\). In this way we give a partial answer to the open problem raised on the last paragraph of the above-mentioned Mihail’s paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号