首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three possible mechanisms (zwitterionic, neutral stepwise, and neutral concerted) of the ring-opening reaction of 2-benzoxazolinone (BO) upon aminolysis with methylamine were studied at the B3LYP/6-31G* level. In the gas phase, the neutral concerted mechanism is shown to be most favorable, which proceeds via a rate-determining barrier of 28-29 kcal/mol. The transition state, CTS, associated with this barrier is a four-centered one, where 1,2-addition of the N[bond]H of methylamine to the C[bond]O of BO ring occurs. The rate-determining barrier of the neutral stepwise pathway is found to be ca. 42 kcal/mol. The inclusion of solvent effects by a polarizable continuum model (PCM) does not change the conclusions based on the gas-phase study; the barrier at CTS is reduced to 20, 20, and 22 kcal/mol in water, ethanol, and acetonitrile, respectively.  相似文献   

2.
3.
4.
5.
《Tetrahedron: Asymmetry》2006,17(8):1264-1274
In a previous work, several 2-phenylcycloalkanamines were subjected to aminolysis catalysed by the lipase B from Candida antarctica (CAL-B). In these processes, the size of the cycle and the stereochemistry of the stereogenic centres of the amines had a strong influence on both the enantiomeric ratio and the reaction rate. Herein, molecular modelling approaches have been used to revise the lipase-catalysed aminolysis mechanism. Thus, complexes of CAL-B with the phosphonamidate analogues related to substrates in the kinetic resolution of several 2-phenylcycloalkanamines by this enzyme were built and minimised. This computational study suggests the formation of zwitterionic species (named TI-Z), resulting from the direct His-unassisted attack of the amine onto the carbonyl group of the acyl-enzyme, as the most plausible intermediate for the CAL-B-catalysed aminolysis. This proposal differs slightly from the commonly accepted serine-mediated mechanism, where removal of the proton from the amine occurs simultaneously to the nucleophile attack to the acyl-enzyme complex (TI-2). Subsequently, His-assisted deprotonation of the resulting ammonium group takes place, and a molecule of water could be necessary in some cases to facilitate the transfer of the proton to the catalytic histidine.  相似文献   

6.
Jennings VJ  Dodson A 《Talanta》1975,22(9):755-757
A titrimetric study of the reaction between chloramine-T (CAT) and ammonia is described. The effects of the presence of bromide, the ratio of CAT to ammonia concentrations, the time for reaction and the pH of the reaction media are all significant in the quantitativeness of the reaction that occurs.  相似文献   

7.
The effects of four cyclodextrins (alpha-CD, beta-CD, hydroxypropyl-beta-CD, and gamma-CD) on the aminolysis of p-nitrophenyl alkanoates (acetate to heptanoate) by primary amines (n-propyl to n-octyl, isobutyl, isopentyl, cyclopentyl, cyclohexyl, benzyl) in aqueous solution have been investigated. Rate constants for amine attack on the free and CD-bound esters (k(N) and k(cN)) have ratios (k(cN)/k(N)) varying from 0.08 (retardation) to 180 (catalysis). For the kinetically equivalent process of free ester reacting with CD-bound amine (k(Nc)), the ratios k(Nc)/k(N) vary from 0.2 to 28. Either way, there is evidence of catalysis in some cases and retardation in others. Changes in reactivity parameters with structure indicate more than one mode of transition state binding to the CDs. Short esters react with short alkylamines by attack of free amine on the ester bound by its aryl group, but for longer amines, free ester reacts with CD-bound amine. Reaction of long esters with long amines, which is catalyzed by beta-CD and gamma-CD, involves inclusion of the alkylamino group and possibly the ester acyl group. The larger cavity of gamma-CD may allow the inclusion of the ester aryl group, as well as the alkylamino group, in the transition state. Reaction between an ester bound to the CD by its acyl group and free amine appears not to be important.  相似文献   

8.
Different possible pathways of the aminolysis reaction of succinic anhydride were investigated by applying high level electronic structure theory, examining the general base catalysis by amine and the general acid catalysis by acetic acid, and studying the effect of solvent. The density functional theory at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels was employed to investigate the reaction pathways for the aminolysis reaction between succinic anhydride and methylamine. The single point ab initio calculations were based on the second-order M?ller-Plesset perturbation theory (MP2) with 6-31G(d) and 6-311++G(d,p) basis sets and CCSD(T)/6-31G(d) level calculations for geometries optimized at the B3LYP/6-311++G(d,p) level of theory. A detailed analysis of the atomic movements during the process of concerted aminolysis was further obtained by intrinsic reaction coordinate calculations. Solvent effects were assessed by the polarized continuum model method. The results show that the concerted mechanism of noncatalyzed aminolysis has distinctly lower activation energy compared with the addition/elimination stepwise mechanism. In the case of the process catalyzed by a second methylamine molecule, asynchronous proton transfer takes place, while the transition vectors of the acid-catalyzed transition states correspond to the simultaneous motion of protons. The most favorable pathway of the reaction was found through the bifunctional acid catalyzed stepwise mechanism that involves formation of eight-membered rings in the transition state structures. The difference between the activation barriers for the two mechanisms averages 2 kcal/mol at various levels of theory.  相似文献   

9.
The reaction of nitrolignin with ammonia has been studied. It has been established that it takes place mainly through the carbonyl and carboxy groups of the lignin. A dark brown product with a high nitrogen content readily soluble in water and exhibiting biological activity was obtained. On the basis of the results of elementary and functional analyses, a semiempirical formula has been calculated for the substance obtained, and its viscosity and electrical conductivity have been determined. The molecular weight, determined by the sedimentation method in an ultracentrifuge, was more than 60,000. It was established by gel chromatography that the product of the interaction of nitrolignin with ammonia was polydisperse.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, Vol. 5, pp. 827–829, November–December, 1985.  相似文献   

10.
The reaction of nitrolignin with ammonia has been studied. It has been established that it takes place mainly through the carbonyl and carboxy groups of the lignin. A dark brown product with a high nitrogen content readily soluble in water and exhibiting biological activity was obtained. On the basis of the results of elementary and functional analyses, a semiempirical formula has been calculated for the substance obtained, and its viscosity and electrical conductivity have been determined. The molecular weight, determined by the sedimentation method in an ultracentrifuge, was more than 60,000. It was established by gel chromatography that the product of the interaction of nitrolignin with ammonia was polydisperse.  相似文献   

11.
The reaction of F(2P) with acetone has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the G3MP2 level using the MP2/6-311G(d,p) optimized structures. Additionally, to ensure the accuracy of the calculations, optimizations with either larger basis set (e.g., MP2/G3MP2Large) or higher level electron correlation [e.g., CCSD/ 6-311G(d,p)] were also performed. It has been revealed that the F + CH3C(O)CH3 reaction proceeds via two pathways: (1) the direct hydrogen abstraction of acetone by F gives the major products HF + CH3C(O)CH2; (2) the addition of F atom to the >C=O double bond of acetone and the subsequent C-C bond cleavage gives the minor products CH3 + CH3C(O)F. All other product channels are of no importance due to the occurrence of significant barriers. Both abstraction and addition appear to be barrierless processes. Variational transition state model and multichannel RRKM theory were employed to calculate the temperature- and pressure-dependent rate constants and branching ratios. The predicted rate constants for the abstraction channel and the yields of HF + CH3C(O)CH3 and CH3 + CH3C(O)F are both in good agreement with the experimental data at 295 K and 700 Torr. A negative temperature dependence of the overall rate constants was predicted at temperatures below 500 K.  相似文献   

12.
The reaction of trifluoromethyl radicals with ammonia in the gas phase has been studied in the temperature range 30-352°. Product formation is not explicable simply in terms of the reactions: and curvature of the Arrhenius plot at high and low temperatures suggests that there are additional sources of fluoroform.  相似文献   

13.
14.
The gas-phase reaction of Ga atoms with NH(3) was studied behind reflected shock waves in the temperature range of 1380 to 1870 K at pressures of 1.4 to 4.0 bar. Atomic-resonance-absorption spectroscopy (ARAS) at 403.299 nm was applied for the time-resolved determination of the Ga-atom concentration. Trimethylgallium (Ga(CH(3))(3)) was used as a precursor of Ga atoms. After the initial increase in Ga concentration due to Ga(CH(3))(3) decomposition, the Ga concentration decreases rapidly in the presence of NH(3). For the simulation of the measured Ga-atom concentration profiles from the studied reaction, additional knowledge about the thermal decomposition of Ga(CH(3))(3) is required. The rate coefficient k(4) of the reaction Ga + NH(3) → products (R4) was determined from the Ga-atom concentration profiles under pseudo-first-order assumption and found to be k(4)(T) = 10(14.1±0.4) exp(-11?900 ± 700 K/T) cm(3) mol(-1) s(-1) (error limits at the one standard deviation level). No significant pressure dependence was noticeable within the scatter of the data at the investigated pressure range.  相似文献   

15.
The structures and energies for the dimerization of water and ammonia molecules were computed with density functional theory (DFT) and ab initio methods. For all studies the same 6-311+G(2d,2p) basis set was used. Two linear hydrogen-bonded and cyclic ammonia dimer structures were computed and their relative stability is discussed. From the systematic studies, hybrid DFT methods were selected as reliable for computing the parameters of these types of van der Waals' complex.  相似文献   

16.
The reactivity of yttrium atoms toward ammonia is revisited using expanded density functional theory calculations. The new results reveal that absorption of NH3 on YNH is dissociative to form Y(NH2)2.The di-amide species can adsorb further NH3 molecules molecularly to form Y(NH2)2NH3 and Y(NH2)2(NH3)2. The calculations aimed to reveal the detail of the potential energy curves between the imide and the di-amide forms. The Y(NH2)2(NH3)x species are more stable than those of YNH(NH3)x by more than 20 kcal/mol.  相似文献   

17.
Transition state structures and energies have been investigated for concerted and stepwise mechanisms for the acyltransfer reactions of ethyl acetate and ethyl thioacetate with ammonia. Specific and general solvent effects have been evaluated. The results predict stepwise mechanisms involving water-catalyzed proton transfer for both reactions and indicate that the thioester is more reactive than the oxoester in both the addition and elimination steps.  相似文献   

18.
To provide insight on the reaction mechanism of the methyperoxy (CH(3)O(2)?) self-reaction, stationary points on both the spin-singlet and the spin-triplet potential energy surfaces of 2(CH(3)O(2)?) have been searched at the B3LYP/6-311++G(2df,2p) level. The relative energies, enthalpies, and free energies of these stationary points are calculated using CCSD(T)/cc-pVTZ. Our theoretical results indicate that reactions on a spin-triplet potential energy surface are kinetically unfavorable due to high free energy barriers, while they are more complicated on the spin-singlet surface. CH(3)OOCH(3) + O(2)(1) can be produced directly from 2(CH(3)O(2)?), while in other channels, three spin-singlet chain-structure intermediates are first formed and subsequently dissociated to produce different products. Besides the dominant channels producing 2CH(3)O? + O(2) and CH(3)OH + CH(2)O + O(2) as determined before, the channels leading to CH(3)OOOH + CH(2)O and CH(3)O? + CH(2)O + HO(2)? are also energetically favorable in the self-reaction of CH(3)O(2)? especially at low temperature according to our results.  相似文献   

19.
20.
Plots of log k(0) vs pH for the cyclization of trifluoroethyl and phenyl 2-aminomethylbenzoate to phthalimidine at 30 degrees C in H(2)O are linear with slopes of 1.0 at pH >3. The values of the second-order rate constants k(OH) for apparent OH(-) catalysis in the cyclization reactions are 1.7 x 10(5) and 5.7 x 10(7) M(-)(1) s(-)(1), respectively. These rate constants are 10(5)- and 10(7)-fold greater than for alkaline hydrolysis of trifluoroethyl and phenyl benzoate. The k(OH) for cyclization of the methyl ester is 7.2 x 10(3) M(-)(1) s(-)(1). Bimolecular general base catalysis occurs in the intramolecular nucleophilic reactions of the neutral species. The value of the Bronsted coefficient beta for the trifluoroethyl ester is 0.7. The rate-limiting step in the general base catalyzed reaction involves proton transfer in concert with leaving group departure. The mechanism involving rate-determining proton transfer exemplified by the methyl ester in this series (beta = 1.0) can then be considered a limiting case of the concerted mechanism. General acid catalysis of the neutral species reaction or a kinetic equivalent also occurs when the leaving group is good (pK(a) 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号