首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The properties of aqueous suspensions of carbon nanotubes have been studied as depending on the conditions of their functionalization in a mixture of sulfuric and nitric acids. The elemental composition and contents of carboxyl, lactone, and hydroxyl groups in carbon nanotubes have been determined at different durations and temperatures of functionalization. The influence of functionalization conditions on the value of the electrokinetic potential of carbon nanotubes in aqueous suspensions and the nanotube solubility in water has been investigated. It has been found that the absolute value of the electrokinetic potential of nanotubes and their solubility in water increase with both the duration and temperature of functionalization due to a rise in the number of functional groups on their surface. The optimal regimes of functionalization of carbon nanotubes have been determined from the point of view of preserving their structure and stability in aqueous dispersions.  相似文献   

3.
Single-walled carbon nanotubes have been functionalized and the specific surface areas of the functionalized nanotubes measured. Contrary to expectations, functionalization leads to a decrease in specific surface area compared to that of the unfunctionalized nanotubes. Treatment with a concentrated 1:1 nitric/sulfuric acid mixture followed by high-temperature baking at 1000 degrees C was found to increase the specific surface area of the nanotubes. For the unfunctionalized SWNTs, this treatment increases the specific surface area (SSA) by 20%. In the case of SWNTs functionalized by n-butyl groups the increase in the SSA was nearly 2-fold with the value increasing from 410 (drying at 110 degrees C) to 770 m2/gm (acid and bake treatment followed by drying at 110 degrees C). For the ozonized SWNTs, the SSA increases more than 3-fold from 381 (drying at 110 degrees C) to 1068 m2/gm (acid and bake treatment followed by drying at 110 degrees C). SEM images indicate that the nanotubes rebundle in the solid state with an average bundle size of 10-30 nm. AFM studies show that the ozonized tubes have been cut to short bundles after ozonolysis. Hydrogen uptake studies carried out on the baked ozonized tubes led to a 3 wt % hydrogen uptake at 77 K and 30 bar.  相似文献   

4.
5.
A simple mechano-chemical modification of multiwall carbon nanotubes is described. The use of ball-milling in specific atmosphere allows us to introduce functional groups like thiol, amine, amide, carbonyl, chlorine, etc. onto carbon nanotubes. The resulted functional groups are characterized using infrared spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

6.
By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed. These predictions are useful to interpret the experimental infrared spectra of SWCNTs.  相似文献   

7.
Although the carbon nanotube (CNT) features superior thermal properties in its pristine form, the chemical functionalization often required for many applications of CNT inevitably degrades the structural integrity and affects the transport of energy carriers. In this article, the effect of the side wall functionalization on the phonon energy transmission along the symmetry axis of CNT is studied using the phonon wave packet method. Three different functional groups are studied: methyl (-CH(3)), vinyl (-C(2)H(3)), and carboxyl (-COOH). We find that, near Γ point of the Brillouin zone, acoustic phonons show ideal transmission, while the transmission of the optical phonons is strongly suppressed. A positive correlation between the energy transmission coefficient and the phonon group velocity is observed for both acoustic and optical phonon modes. On comparing the transmission due to functional groups with equivalent point mass defects on CNT, we find that the chemistry of the functional group, rather than its molecular mass, has a dominant role in determining phonon scattering, hence the transmission, at the defect sites.  相似文献   

8.
Ion selectivity using membranes comprising functionalized carbon nanotubes   总被引:1,自引:0,他引:1  
In this paper, we use applied mathematical modelling to investigate the transportation of ions inside functionalized carbon nanotubes, and in particular the transport of sodium and chloride ions. This problem is important for future ion transport and detection, and also arises in ion diffusion inside complex biological channels. Some important future applications of the system for a solvent are ultra-sensitive biosensors and electrolytes for alkaline fuel cells. We model the interactions between the ions and the nanotube by the Lennard-Jones potential and the interactions between the ions and the functional group by the Coulomb potential, while the atomic interactions between the ions is modeled by both the Lennard-Jones and Coulomb potentials. We further assume that the carbon atoms, the charge of the functional group, and the ions are all evenly distributed on the surface of the nanotube, the entry of the nanotube and the envisaged ionic surface, respectively, so that we may use the continuous approximation to calculate the corresponding potential energies. For nanotubes located in salt water, the molecular effects arising from the bulk solution can be extracted from MD simulation studies. Assuming that the solvent is absent, we first determine the acceptance radii for the sodium or chloride ion entering the nanotube, both with and without a functional group, and we then determine the equilibrium positions of two identical ions inside the nanotube. Finally, the transportation time of an intruding ion through the nanotube is deduced from the total axial force. In the presence of a solvent, the molecular effects arising from the bulk solution are examined and we establish that the presence of a solvent stabilizes the selectivity of the ions.  相似文献   

9.
Multiwalled carbon nanotubes (MWNTs) functionalized with a water-soluble conducting polymer, sulfonated polyaniline (SPAN), were prepared by in situ polymerization of aniline followed by sulfonation with chlorosulfonic acid in an inert solvent and by hydrolysis in water. Electron microscopy, laser Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-vis absorption spectroscopy were employed to characterize the morphology and chemical structure of the resulting product. The results show that the quinonoid structure of SPAN preferentially interacts with the nanotubes and is stabilized by strong pi-pi interaction between two components. The structure of MWNTs was not perturbed by the incorporation of SPAN, since the pi-pi interaction between MWNTs and SPAN is much weaker in comparison to that of the carbon covalent bond. The SPAN functionalized MWNTs are highly dispersible in water, thus opening new possibilities for their prospective technological applications.  相似文献   

10.
Asymmetrically functionalized single-wall carbon nanotubes (SWNTs) have been prepared by a covalent reaction of an 11-mercaptoundecanol-modified Au surface with oxidized SWNT cylinders. While one end of the tubes is attached to gold substrate via ester groups, the free carboxylic substituents on the other end can be either ionized (CO2-) or esterified (CO2Et), creating a donor-acceptor asymmetric and acceptor-acceptor symmetric SWNT, respectively. Study of the SWNT monolayer conductance in Hg drop junction experiments reveals a pronounced diode-like behavior for donor-SWNT-acceptor junctions, while acceptor-SWNT-acceptor junctions are electrically symmetric.  相似文献   

11.
Amidoferrocenyl-functionalised single wall carbon nanotubes (Fc-SWNT) are efficient exoreceptors for the redox recognition of H2PO4-.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) were effectively dispersed and functionalized by wrapping with single-stranded DNA (ssDNA). The ssDNA-SWNTs attach strongly on glass substrate and easily form a uniform film, making it possible for electrochemical analysis and sensing. The film was fabricated into a working electrode, which exhibited good electrochemical voltammetric properties, such as flat and wide potential window, well-defined quasi-reversible voltammetric responses, and quick electron transfer for a Fe(CN)6(3-)/Fe(CN)6(4) system, indicating that the ssDNA-SWNTs film should be a good analytical electrode for electrochemical detection or sensing. This was demonstrated by highly selective and sensitive detection of a low concentration of dopamine in the presence of excess ascorbic acid.  相似文献   

13.
We report the synthesis of a single-walled carbon nanotube (SWNT) graft copolymer. This polymer was prepared by the functionalization of SWNTs with polyethyleneimine (PEI). We used this graft copolymer, SWNT-PEI, as a substrate for cultured neurons and found that it promotes neurite outgrowth and branching.  相似文献   

14.
A low-temperature flexible process, named "chemical transfer", was developed to assemble well-aligned carbon nanotube (ACNT) structures onto various substrates. The technology was featured by (1) in situ functionalization of ACNTs with reactive functional groups during the CVD process and (2) covalently bonded interface with a self-assembled monolayer (SAM) of conjugated thiol molecules as the bridging ligand and conduction path at the ACNT/gold interface. The effectiveness of the in situ functionalization was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). I-V response and the interfacial strength of the chemically transferred structure were studied. Results showed an Ohmic contact, low electrical resistivity, and improved CNT-substrate adhesion. This novel technique shows promising applications for positioning ACNTs as electrical interconnects or thermal interface materials on temperature-sensitive substrates.  相似文献   

15.
Matrix‐polymer‐functionalized multiwalled carbon nanotubes (MWCNTs) are demonstrated as a highly efficient toughening agent for matrix polymers. With poly(vinylidene fluoride) (PVDF) as the matrix polymer, the PVDF/MWCNT‐PVDF nanocomposite films show high toughness. With a small load amount of MWCNT‐PVDF (0.07 wt %), the nanocomposite film shows a yield point and a constant‐stress extension region in stress–strain tests, compared with the typical low‐extensibility feature of neat PVDF film. The PVDF/MWCNT‐PVDF‐0.7 film exhibits a 180‐fold increase of toughness and about 38‐fold increase in strain at break compared with neat PVDF film. This toughening effect is attributed to (a) homogeneous dispersion of MWCNT‐PVDF in PVDF, (b) the high efficiency of load‐transfer across MWCNT/PVDF interface, and (c) the long length of the MWCNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
L-酪氨酸功能化多壁碳纳米管的制备及表征   总被引:1,自引:0,他引:1  
采用L-酪氨酸作为修饰剂,制备了一种新型功能化的多壁碳纳米管,并对其进行了表征。红外光谱和电化学实验均证实碳纳米管和酪氨酸是通过酰胺键共价键合的。其中,循环伏安实验中0.22V处羧基峰的消失与红外光谱中1717cm^-1处N-酰化氨基酸的-C=O峰相对应,2931和2860cm^-1处的-CH2-的伸缩振动峰的出现证明了产物的形成。  相似文献   

17.
A co-spraying method of binary mixture aniline–single-walled nanotubes (SWNTs) in a plasma stream is proposed as an alternative to design new composites and nanotube functionalizing. The electrical characterizations, Fourier transform-infrared spectroscopy (FT-IR) and Raman spectra show a chemical bonding to the nanotube surface. IV characteristics show a combined effect of the conduction mechanisms imposed by space charged limited currents (SLCS) and the metallic/semimetallic character of the nanotubes.  相似文献   

18.
Microwave-assisted functionalization of single-wall carbon nanotubes (SWNTs) in a mixture of nitric and sulfuric acids was carried out to synthesize highly water-dispersible nanotubes. Stable concentrations as high as 10 mg/mL were obtained in deionized water that are nearly 2 orders of magnitude higher than those previously reported. This was after only 3 min of functionalization reaction. Fourier transform infrared spectra showed the presence of carboxylated (-COOH) and acid sulfonated (-SO(2).OH or -SO(3)(-) H(+)) groups on the SWNTs. On the basis of elemental analysis, it was estimated that one out of three carbon atoms was carboxylated, while one out of 10 carbon atoms was sulfonated. The Raman spectra taken both in aqueous dispersion and in the solid phase indicated charge transfer from the SWNT backbone to the functional groups. Scanning electron microscope images of thin films deposited from an aqueous suspension showed that the SWNTs were aligned parallel to one another on the substrate. The images also indicated some reduction in average length of the nanotubes. Transmission electron microscope images of thin films from a dilute methanol dispersion showed that the SWNTs were extensively debundled. Laser light scattering particle size measurements did not show evidence for the existence of particles in the 3-800 nm size range, indicating that the functionalized SWNTs might have dispersed to have formed a true solution. Moreover, the microwave-processed SWNTs were found to contain significantly smaller amounts of the original iron catalyst relative to that present in the starting nanotubes. The electrical conductivity of a thermally annealed thin membrane obtained from the microwave-functionalized SWNTs was found to be the same as that of a similar membrane obtained from a suspension of the starting nanotubes.  相似文献   

19.
The crosslinking reaction of ethylene-propylene-diene terpolymer (EPDM) peroxide vulcanization filled with pristine and functionalized carbon nanotubes (CNTs and S/CNTs) was evaluated by rheometric tests. The functionalization of CNTs was carried out by diazonium salt methodology in acid medium. S/CNTs were characterised by means of TGA, EDX, Raman and elemental analysis. Pristine CNTs were found to gradually increase the delta torque as a function of loading fraction. Nevertheless, the vulcanization time, scorch and optimum cure time hardly varied on addition of CNTs. However, S/CNTs noticeably affected the cure process, reducing the vulcanization time and delta torque. This effect was related to the presence of acid sites on the CNTs surface which reduced the peroxide efficiency. For this reason, triallyl cyanurate (TAC), highly reactive towards free radicals, was used as coagent to increase the crosslinking efficiency without affecting the cure rate or adding scorch.  相似文献   

20.
The 13C NMR spectroscopy of armchair and zigzag single-walled carbon nanotubes has been investigated theoretically. Spectra for (4,4), (5,5), (6,6), (6,0), (9,0), and (10,0) nanotubes have been simulated based on ab initio calculations of model systems. The calculations predict a dominant band arising from the carbon atoms in the "tube" with smaller peaks at higher chemical shifts arising from the carbon atoms of the caps. The dominant band lies in the range of 128 and 138 ppm. Its position depends weakly on the length, width, and chirality of the tubes. The calculations demonstrate how structural information may be gleaned from relatively low-resolution nanotube 13C NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号