首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Adsorbed polystyrene sulphonate (PSS) shifts the pH of the zero zeta potential, pHς = 0, of ZrO2 to a lower pH. The positive charge density of ZrO2 at pH = pHς=0 determined from the amount of PSS adsorbed was in excellent agreement with that obtained from charge titration. Polystyrene sulphonic acid shifts pHς=0 to a greater degree compared with polyacrylic acid because it is a much stronger acid. A patch is likely to just consist of one adsorbed molecule. The patch is negative when the charges of the molecule exceed the underlying positive surface charge. Attraction between the negative patch and the bare positive surface of a second particle is responsible for increasing the yield stress of concentrated ZrO2 dispersions at pHς=0. Its magnitude is only of the order of the van der Waals attraction. Increasing ionic strength and patch misalignment diminish the attraction. The upper limit of the patch area was estimated from the radius of gyration of the molecule in solution. With a known patch area, the patch charged density can be calculated. With the selection of an appropriate patch area, the yield stress due to charged patch attraction increases linearly with the product of the negative and positive patch densities. Received: 30 March 1998 Accepted: 18 September 1998  相似文献   

2.
Hydrogen peroxide oxidation of cyclohexane in acetonitrile solution catalyzed by the dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) at 25 °C in the presence of a carboxylic acid affords cyclohexyl hydroperoxide as well as cyclohexanone and cyclohexanol. A kinetic study of the reactions with participation of three acids (acetic acid, oxalic acid, and pyrazine-2,3-dicarboxylic acid, 2,3-PDCA) led to the following general scheme. In the first stage, the catalyst precursor forms an adduct. The equilibrium constants K1 calculated for acetic acid, oxalic acid, and 2,3-PDCA were 127±8, (7±2)×104, and 1250±50 M−1, respectively. The same kinetic scheme was applied for the cyclohexanol oxidation catalyzed by the complex in the presence of oxalic acid. The oxidation of cyclohexane in water solution using oxalic acid as a co-catalyst gave cyclohexanol and cyclohexanone, which were rapidly transformed into a mixture of over-oxidation products. In the oxidation of cyclohexanol to cyclohexanone, varying the concentrations of the reactants and the reaction time we were able to find optimal conditions and to obtain the cyclohexanone in 94% yield based on the starting cyclohexanol. Oxidation of acetone to acetic acid by the system containing oxalic acid was also studied.  相似文献   

3.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc–tyrosine or Fmoc–phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc‐protected amino acid, namely, 2‐{[(9H‐fluoren‐9‐ylmethoxy)carbonyl](methyl)amino}‐3‐{4‐[(2‐hydroxypropan‐2‐yl)oxy]phenyl}propanoic acid or N‐fluorenylmethoxycarbonyl‐O‐tert‐butyl‐N‐methyltyrosine, Fmoc‐N‐Me‐Tyr(t‐Bu)‐OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single‐crystal X‐ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N‐Fmoc‐phenylalanine [Draper et al. (2015). CrystEngComm, 42 , 8047–8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H…H, C…H/H…C and O…H/H…O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen‐bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C—H…O, C—H…π, (fluorenyl)C—H…Cl(I), C—Br…π(fluorenyl) and C—I…π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long‐Range Synthon Aufbau Modules, further supported by energy‐framework calculations, are discussed. Furthermore, the relevance of Fmoc‐based supramolecular hydrogen‐bonding patterns in biocomplexes are emphasized, for the first time.  相似文献   

4.
Earlier studies with 2‐bromocyclohexanone demonstrated a measurable long‐range coupling constant (4JH2,H6) for the equatorial conformer, although 4JH2,H4 and 4JH4,H6 were not observed; as a consequence, it is inferred that the carbonyl group plays an important role particularly due to hyperconjugative interactions σC2H2→π*C═O and σC6H6→π*C═O. In the present study, NBO analysis and coupling constant calculations were performed to cyclohexanone and cyclohexanethione alpha substituted with F, Cl, and Br, aiming to evaluate the halogen effect and acceptor character of the π* orbital on the long‐range coupling pathway. The σC2H2→π*C1═Y and σC6H6→π*C1═Y (Y═O and S) hyperconjugative interactions for the equatorial conformer indeed contribute for the 4JH2,H6 transmission mechanism. Surprisingly, the 4JH2,H6 value is higher for the carbonyl compounds, although the interactions σC2H2→π*C═Y and σC6H6→π*C═Y are more efficient for the thiocarbonyl compounds. Accordingly, the Fermi contact (FC) contribution for the thiocarbonyl compounds decays deeper than in ketones, thus reducing more the 4JH2,H6 values. Moreover, both πC═S→σ*C─X and πC═S→σ*C─H interactions seem to be stronger in thiocarbonyl than in carbonylic compounds. The implicit solvent effect (DMSO and water) on the coupling constant values was negligible when compared with the gas phase. On the other hand, an explicit solvent effect was found and 4JH2,H6 for the thiocarbonyl compounds appeared to be more sensitive than for the cyclohexanones.  相似文献   

5.
The acid dissociation constants of nine aliphatic carboxylic acids in several N,N-dimethylformamide-water mixtures were subjected to factor analysis (FA) and two solvent factors emerged. A further target factor analysis (TFA) indicated that the Kamlet and Taft general equation is reduced in these mixtures to two terms: the independent one and that related to the hydrogen bond acceptor (HBA) basicity solvatochromic parameter. Accordingly, an excellent correlation is found between the logarithmic values of the acidity constants of each acid in the binary mixtures and their corresponding values.  相似文献   

6.
Five cationic complexes of the general formula [Cp′2Ti(A)2]2+ [Cl?]2 [Cp′ = η5‐(CH3)C5H4 and A = glycine, 1 ; 2‐methylalanine, 2 ; N‐methylglycine, 3 ; L ‐alanine, 4 ; and D ‐alanine 5 ] were prepared by the reaction of Cp′2TiCl2 and the appropriate α‐amino acid in 1:2 molar ratio from methanol–water solution in high yield. Air‐stable crystalline solids, highly soluble in water, were characterized by means of elemental analysis, IR, Raman, 1H, 13C and 14N NMR spectroscopy. The structure of compound 3 was determined by single crystal X‐ray crystallography: orthorhombic Pbca No. 61, a = 9.5310(3), b = 18.2980(5), c = 26.6350(5) Å, V = 4654 Å3, Z = 8. Hydrolytic stability of all compounds in D2O was investigated using 1H NMR spectroscopy within the pD interval of 2.9–6.5. All compounds slowly decomposed during 24 h at pD = 2.94, forming a mixture of hydrolytic products [Cp′2Ti(A)(D2O)]2+, [Cp′2Ti(D2O)2]2+ and respective α‐amino acids. By elevating pD to 4.0 and up to 6.5, a yellowish precipitate was formed, which indicates decomposition of the complexes. These compounds were characterized using elemental analyses, IR and Raman spectroscopy and attributed to oligomeric and/or polymeric structures described empirically by the formula Ti(Cp′)xOy(OH)z (x = 0.65; y = 0.3, z = 1.9). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Not a dimer but a monomer was found in the X-ray structure analysis of the complex “trans-[{FeCl(depe)2}2(µ-N2)](BPh4)2” (depe=Et2PCH2CH2PEt2). The complexes [FeXN2(depe)2]BPh4 (X=Cl, Br; structure of the cation for X=Cl shown on the right) are much less stable than the analogous hydride compounds and undergo N2 exchange at room temperature even in the solid state.  相似文献   

8.
FTIR spectra of the four isotopically substituted 1:1 complexes of acetonitrile and boron trifluoride were recorded in Ar, N2 and Xe matrices. In Ar, previously unreported three vibrational modes of the complex were clearly observed. Several significant vibrational bands were also observed in N2 and Xe. The observed frequency shifts on complexation, Δν, were qualitatively in good agreement with the computational results, which were calculated at the B3LYP/6-311++G(d,p) level using the optimized geometry of the C3v eclipsed conformation. The observed magnitudes of Δν for most of the complex bands were larger than the calculated values. The BF3 symmetric deformation mode is an exception. The observed frequency shits for this mode were smaller than the calculated values, especially in N2. This suggests that even an inert matrix can significantly affect the vibrational spectrum of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号