首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
液相控制沉淀法制备备纳米级Co3O4微粉   总被引:6,自引:0,他引:6  
报道了一种液相控制沉淀与分解制备Co3O4超微粉的方法,研究表明,采用液相沉淀控制技术,无需引入高分子保护剂,同样可以制备出晶粒细小,粒度分布均匀,无团聚的高质量Co3O4超微粉,该法工艺简单,成本低,产率高。  相似文献   

2.
CO低温氧化是多相催化领域研究最多的反应之一.作为简单、典型的探针反应,其不仅具有重要的基础研究价值,而且在环境污染消除等方面也有着非常重要的实际应用价值.金属氧化物如铜锰(Hopcalite)、铜铬复合氧化物以及氧化钴等都具有优异的低温CO氧化活性.然而氧化物催化剂热稳定性低、反复启动性能差、以及对硫化物、水等物质敏感,严重制约了其实际应用.相对而言,负载型贵金属催化剂因具有较高的CO氧化活性、反应稳定性以及热稳定性而受到关注.但是贵金属价格昂贵、资源稀少,使其持续应用面临严峻挑战.为了提高贵金属利用效率、降低贵金属使用量,在负载型贵金属催化剂中,贵金属多以纳米尺度分散于高比表面载体上.由于多相催化一般在纳米粒子表面发生,只有表面金属原子能够接触到反应物,因而贵金属原子利用率仍然有待提高.最近本课题组成功开发以原子级分散的单原子催化剂并提出“单原子催化”的概念.后续研究以及其他研究人员相继证明氧化物负载贵金属单原子具有高活性和/或不同于纳米粒子的反应性能,表明开发单原子催化剂是最大化贵金属利用效率、降低贵金属用量的可行途径.对于CO氧化而言,目前普遍认为负载Au催化剂具有最高活性.然而负载Au单原子催化剂是否具有活性仍存争议:理论计算表明氧化物负载Au单原子催化剂具有很好的活性,但是缺少实验证据;目前已有一些氧化物负载Au正价离子催化剂的报道,结果也都表明Au单原子活性远低于纳米粒子或纳米团簇.最近本课题组发现氧化铁负载Au单原子不仅具有与Au纳米粒子相当的单位活性位(TOF)活性而且具有更高的单位金属重量(反应速率)活性以及非常高的反应稳定性.本文将载体拓展到氧化钴,开发了具有更高活性的氧化钴负载Au单原子催化剂, Au负载量仅为0.05 wt%即可在室温条件下实现CO完全转化. Co3O4载体用Co(NO3)3与Na2CO3通过共沉淀法制备,400 oC焙烧.然后通过简单的沉淀吸附法制备Co3O4负载Au单原子催化剂(Au1/Co3O4),确保Au单原子能够分散于载体的表面.具有原子分辨率的球差校正高分辨电镜照片显示Au原子确实以单原子形式分散于载体上.催化剂在第一个循环中活性并不非常高,但是在第二个循环中活性提高非常明显,可以在室温条件下实现CO全转化.为了弄清楚活性提高的原因,我们用惰性气体(He)、氧化性气体(5%O2/He)以及还原性气体(5%CO/He)对催化剂进行了热处理,但是活性提高并不明显.由此推断催化剂是在第一个循环反应过程中发生了某些变化,导致活性显著提高.空白载体实验表明Co3O4载体本身虽然具有反应活性,但是远不如负载少量Au原子活性高,表明Au原子或Au原子与载体一起起到高活性的作用.稳定性研究表明该催化剂在室温条件下容易失活,但经惰性气体或氧化气体处理后活性可恢复,表明不是结构性失活而是可逆失活,说明单原子非常稳定.  相似文献   

3.
本文采用浸渍涂覆法成功制备出多孔Ti负载纳米Co3O4电催化膜电极(Co3O4/Ti),以该膜电极为阳极,辅助电极为阴极,构建电催化膜反应器(electrocatalytic membrane reactor,ECMR)用于可控催化氧化苯甲醇制备苯甲醛和苯甲酸,并考察了 Co3O4/Ti 膜电极结构、电化学性能以及ECMR不同操作参数对苯甲醇转化率、苯甲醛和苯甲酸选择性的影响. 结果表明,负载Co3O4纳米颗粒可以显著提高Ti膜电极的电化学性能和催化活性. 在常温常压下,当反应物苯甲醇浓度为10 mmol·L-1,pH为7.0,停留时间为5.0 min,电流密度为2.5 mA·cm-2,苯甲醇的转化率达到49.8%,苯甲醛选择性为51.5%,苯甲酸选择性为23.6%.  相似文献   

4.
近年来,纳米科学技术的迅速发展给催化领域,特别是多相催化带来了新的机遇和挑战.科学家们开始着眼于在纳米尺度上对催化剂结构和催化性能进行表征、控制和设计.Co3O4作为一种重要的半导体金属氧化物材料,由于其优异的氧化还原性质,在锂电池、气体传感器以及多相催化领域得到了十分广泛的应用.最近,研究者发现Co3O4纳米晶在催化CO低温氧化和CH4活化等一系列重要反应中表现出显著的反应活性和晶面效应,表明有效设计和合成特定的高活性、高选择性的纳米晶面,对催化领域的发展将具有十分重要的意义.因而,从原子层面对纳米晶所表现出的这种高活性和晶面效应进行深入解释,将为高效催化剂设计提供重要指导.低温CO氧化作为一种重要的催化反应在燃料电池、空气净化与汽车尾气处理中具有重要的应用价值.本文采用密度泛函理论对Co3O4纳米晶催化CO氧化反应的机理、晶面效应以及结构敏感性进行了理论研究.首先,研究了CO在Co3O4(001)和(011)表面Co,CoOo和Co-Ot三种不同位点的吸附扩散行为,发现CO在Co位点表现出较强的吸附行为,但这种吸附构型需要克服很高的能垒(~1 eV)才能转变到Co-O离子对位点,在低温下这种转变将不可能发生,因此我们推断CO在Co位点的吸附对Co3O4催化CO氧化的晶面效应没有显著影响.接着,对CO在Co-O离子对位点抽提晶格氧生成CO2的反应机理进行了研究.我们发现,(011)表面Co-Ot位点可以较强地吸附CO(吸附能-1.15 eV),并十分容易夺取晶格氧离子(能垒0.26 eV),具有很低的势能面,因而其CO氧化活性明显大于(001)面.为了更清楚地理解这种晶面效应和结构敏感效应的本质,我们提出将CO2形成步的过渡态在反应路径上的能级作为反应活性指标.这种活性指标兼顾考虑了CO在Co-O氧位点的吸附覆盖度和CO2形成步的反应能垒,可以近似理解为反应的表观活化能.据此我们得出,Co3O4不同表面不同品格位点催化CO氧化的反应活性顺序为:(011)-Co-Ot>>(001)-Co-Oo>(011)-Co-Oo>(001)-Co-Ot.由于CO吸附和CO2形成步都涉及到表面被还原的过程,我们因此发现CO催化氧化活性的高低与表面晶格氧位点的可还原性具有正相关性.这种表面不同位点的还原性可以直接通过对空穴形成能的计算获得,降低表面氧空穴的生成能将有利于提高CO氧化的活性.催化设计的终极目标是在对催化活性位点的本质及反应机理深入认识的基础上在原子层面上对催化剂进行可控设计,从而实现催化剂材料的高效、经济的利用.本文研究表明离子对活性位点是Co3O4纳米晶催化CO氧化反应的活性位点,其中阳离子负责对CO的吸附,阴离子则负责CO2的形成过程,这种协同作用实现了Co3O4纳米晶的高反应活性.我们相信,寻找有效的方法在催化剂表面增加离子对位点活性中心的数目是一种实现高性能催化剂设计的途径.  相似文献   

5.
采用简单的自发氧化还原法合成了Co3O4/CeO2纳米复合材料,采用透射电子显微镜(TEM)\,X射线衍射(XRD)及X射线光电子能谱(XPS)等分析手段对样品进行了表征,并探究了反应参数对其催化CO氧化反应活性的影响.结果表明,Co/Ce摩尔比、pH值、反应温度和煅烧温度均显著影响Co3O4/CeO2纳米复合材料的催化性能;性能最优的样品用于催化CO氧化反应在140℃时即可实现100%的转化率,并且在循环测试中其催化活性保持不变,显示出良好的稳定性.  相似文献   

6.
纳米Co3O4的制备、表征及CO低温催化氧化   总被引:17,自引:1,他引:16  
CO的常温催化氧化由于在消除环境污染、空气净化、CO传感器、封闭式CO2激光器及密闭系统内消除CO等方面的实用价值而颇受关注.已报道的CO催化氧化催化剂有Hopcalite、复合氧化物、贵金属[4,5]等.  相似文献   

7.
针对ZIF-67衍生Co3O4催化剂低温甲醛氧化性能不佳的问题,采用锰(Mn)对Co3O4催化剂进行改性以提升其低温甲醛氧化性能。活性评价结果表明,相比于未改性的Co3O4催化剂,Mn改性后的Mn-Co3O4催化剂甲醛氧化活性显著提升,在118℃下即可实现90%的甲醛转化率(进口甲醛浓度为98.16 mg/m3,空速为60000 mL/(gcat·h))。XRD、Raman和BET结果显示,Mn改性后催化剂的结晶度降低,缺陷增加,比表面积增大,这有利于反应物分子的吸附和活性位点的暴露。XPS、H2-TPR和O2-TPD表征结果表明,Mn-Co间存在的强相互作用显著改善了Mn-Co3O4催化剂的低温氧化还原性能和氧活化能力,使其具有更加丰富的Co3+和表面吸附氧物种。最终,这些因素共同...  相似文献   

8.
采用沉淀法制备了Co3O4催化剂,并将催化剂在流动的N2或O2气氛中于不同温度下进行预处理.通过X射线衍射(XRD)、热重-差示扫描量热分析(TG-DSC)、程序升温脱附(O2/CO2-TPD,HCHO-TPSR)和原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等手段对催化剂表面物种进行了表征.结果表明,Co3O4-N2-200催化剂表面存在Co3+不饱和配位中心和丰富的弱配位氧负离子,容易形成双配位的甲酸盐,并转化成单配位的甲酸盐,进一步分解为产物.  相似文献   

9.
李赏  朱广文  邱鹏  荣刚  潘牧 《催化学报》2011,32(4):624-629
采用液相控制沉淀法制备了平均粒径约为10nm的C03O4/C催化剂,运用X射线衍射和透射电镜对催化剂进行了表征,通过循环伏安法和线性扫描伏安法测试了催化剂催化氧还原反应的性能.结果表明,在酸性条件下,C03O4/C对氧还原反应具有电催化活性.利用Koutecky-Levich理论计算得到了交换电流密度为1.1×10-9...  相似文献   

10.
郭强  吴美玲  刘源  白雪 《催化学报》2007,28(11):953-957
采用溶胶-凝胶法制备出介孔氧化铈(meso-CeO2)及其负载的氧化钴(Co3O4/meso-CeO2)催化剂,并将其应用于富氢气体中CO的优先氧化反应.通过N2物理吸附及X射线衍射表征考察了meso-CeO2和Co3O4/meso-CeO2的结构性质.活性评价结果表明,在高空速下,Co3O4/meso-CeO2催化剂上的CO优先氧化性能很好,但水和CO2对CO的氧化有一定的负作用.Co3O4/meso-CeO2催化剂的CO完全氧化温度窗口远大于沉淀法制备CeO2负载的氧化钴催化剂.  相似文献   

11.
CO and formaldehyde (HCHO) oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot (OP) and impregnation (IM) methods. It was found that the one-pot method was superior to the impregnation method for synthesizing Ag/Co3O4 catalysts with high activity for both reactions. It was also found that the catalytic behavior of mesoporous Co3O4 and Ag/Co3O4 catalysts for the both reactions was different. And the addition of silver on mesoporous Co3O4 did not always enhance the catalytic activity of final catalyst for CO oxidation at room temperature (20 °C), but could significantly improve the catalytic activity of final catalyst for HCHO oxidation at low temperature (90 °C). The high surface area, uniform pore structure and the pretty good dispersion degree of the silver particle should be responsible for the excellent low-temperature CO oxidation activity. However, for HCHO oxidation, the addition of silver played an important role in the activity enhancement. And the silver particle size and the reducibility of Co3O4 should be indispensable for the high activity of HCHO oxidation at low temperature.  相似文献   

12.
甲醛催化氧化催化剂的研究进展   总被引:5,自引:0,他引:5  
甲醛是致癌致畸物并具有较强的光化学活性.它既来源于纺织、农药、板材或其他精细化学品的生产过程,又来源于机动车尾气和室内各种装潢材料.为了人体健康和大气环境去除甲醛非常必要.用催化氧化法去除甲醛是一种很有前景的技术,但是该技术的关键是研究和发展催化剂.近年来,用于甲醛氧化的催化剂主要分为贵金属催化剂和过渡金属氧化物催化剂.贵金属催化剂是将Pt,Pd,Au,Ag等贵金属负载在不同类型的载体上而制得.载体可分为常见载体、传统金属氧化物载体和特殊形貌金属氧化物载体.常见载体是具有较大比表面积的SiO2,Al2O3,TiO2和分子筛等.这类载体有利于活性位的暴露以及反应物和产物的吸附和扩散,而且还能增强载体和活性组分的协同作用.负载在常见载体上的不同贵金属催化剂,其甲醛氧化活性从强到弱排列是:Pt> Pd> Rh >Au> Ag.用这种载体制备的催化剂具有很出色的应用前景.比如Na-Pt/TiO2是甲醛氧化活性最好的催化剂,目前己被应用在空气净化器中,其次是Pt/TiO2和Pd/TiO2.传统金属氧化物载体主要是采用沉淀法、共沉淀法制备的CeO2,Fe2O3,Co3O4,MnO2及其复合氧化物,这类载体负载Pt的催化剂仍然具有出色的室温催化性能,如Pt/MnOx-CeO2和Pt/Fe2O3等.虽然Pt负载型催化剂应用前景很好,但是其成本较高,工业生产和普及受到限制.用传统金属氧化物载体制备的催化剂如Au/CeO2,Ag/MnOx-CeO2和Ag/CeO2等同样具有良好的发展前景.对于提高甲醛氧化活性来说,载体的选择至关重要.未来研究趋势可能是甲醛氧化负载型催化剂更多的会选择Ag或Au作为活性组分,而一些有潜力的传统金属氧化物载体将被使用不同的制备方法进一步改良.目前,拥有棒状、球状、孔状等特殊形貌的金属氧化物载体因为它们本身的催化活性要优于用沉淀法制备的传统金属氧化物催化剂,因此,将Ag或Au负载在这类载体上制备的催化剂具有更好的应用前景,如三维(3D)有序大孔Au/CeO2-Co3O4,二维有序介孔Au/Co3O4-CeO2和Au/Co3O4以及三维有序介孔K-Ag/Co3O4等.过渡金属氧化物催化剂,因成本低,资源丰富而受到关注.单一过渡金属氧化物催化剂如锰钾矿型的MnO2纳米棒或纳米球,介孔MnO2,Co3O4和Cr2O3等,具有较好的甲醛氧化催化活性(T50和T100分别小于等于1 10和140℃).另外,Ce,Sn,Cu和Zr等元素常常被掺杂到MnOx和Co3O4中,制备成复合金属氧化物催化剂,MnOx-CeO2具有较好的甲醛催化活性(T50<100℃),因为MnOx和CeO2较强的相互作用改变了表面活性氧和活性相的数量.目前,复合金属氧化物催化剂氧化甲醛的报道很少.随着制备方法的改变,单一过渡金属氧化物或他们的复合氧化物催化剂可能会成为贵金属催化剂的替代品.目前,如何获得高效、低成本、低温甚至常温去除甲醛的催化剂仍然是一项重要的挑战.特殊形貌的金属氧化物催化剂如3D-Cr2O3,3D-Co3O4,MnO2纳米球和纳米棒,在常温下完全转化甲醛仍然是个难以越过的鸿沟.将来,多种形貌的新型纳米金属氧化物及其Au或Ag负载型催化剂的制备和发展会成为一个研究趋势.这种催化剂既能被用于甲醛的催化氧化,也能被用于苯系物或其他VOCs的催化氧化.它能为机动车尾气和工业生产中VOCs产生量的削减提供技术支撑,而VOCs的去除有益于PM2.5浓度的降低和空气质量的恢复.  相似文献   

13.
通过催化剂将CO转化为无毒气体仍然是目前减少CO污染的主要手段.随着纳米技术的快速发展,纳米催化剂因其在催化反应中呈现出的独特结构效应(如形貌效应、尺寸效应等)而受到人们的广泛关注.已有大量研究表明,纳米Co3O4作为一种非贵金属氧化物催化剂具有强烈的催化形貌效应,展现出优异的CO低温催化活性.因此,通过合理的设计来调控催化剂粒子的形貌,从而进一步改善催化剂的性能已成为近年来催化剂领域的重要研究方向.对于Co3O4纳米催化剂的可控制备,水热法具有反应温和、操作简便和产品形貌易控等特点.早期的研究主要围绕于Co3O4形貌的可控合成以及不同形貌Co3O4催化剂对其催化活性产生的影响,较少有对其形貌形成机制的报道.特别是在水热反应中,系统研究各反应参数对催化剂各异形貌的形成影响鲜有报道.
  本文在前人的研究基础上,重点研究了水热反应过程中各主要反应参数对产品形貌控制的影响,绘制了一副不同形貌Co3O4材料的合成过程图,并研究了Co3O4纳米催化剂催化CO氧化的形貌效应.通过水热法先成功合成了三种不同形貌(纳米棒、纳米片和纳米立方)的碱式碳酸钴纳米粒子,然后将其焙烧得到了Co3O4纳米粒子.采用扫描电子显微镜(SEM),透射电子显微镜(TEM), X射线粉末衍射仪(XRD),程序升温还原(H2-TPR和CO-TPR),氮气吸附-脱附比表面积测试(BET),氧气程序升温脱附(O2-TPD), X射线光电子能谱(XPS)等表征手段研究了不同反应参数对纳米碱式碳酸钴前驱体形貌形成的作用和各异形貌Co3O4纳米粒子在催化CO氧化反应中催化性能的差异及原因.
  结果表明, Co3O4较好地继承了碱式碳酸钴的形貌,在较低温度条件下(≤140°C),钴源(CoCl2或Co(NO3)2)是影响前驱体形貌的关键因素,反应时间只对粒子的尺寸产生较大影响.低温下, CoCl2作为钴源易诱导生产纳米棒状碱式碳酸钴,而Co(NO3)2则有利于纳米片状生成.当温度高于140°C后,无论何种钴源,最终均制得纳米立方体.表面活性剂CTAB对前驱体的均一性和粒子的分散性产生重要影响,加入CTAB后得到的产品尺寸更均一,形貌更加规整.对比于其他两种形貌的样品, Co3O4纳米片显示出更好的CO催化氧化活性.
   XPS结果表明,各形貌Co3O4纳米材料的表面组成存在明显差异,活性物种Co3+含量的不同是影响催化活性差异的重要原因. Co3O4纳米片具有更多的Co3+活性位,立方纳米Co3O4表面吸附氧含量较高, Co3O4纳米棒则暴露出相对更多的Co2+.因此,在三种形貌催化剂上CO氧化反应中, Co3O4纳米片表现出最优的催化活性,纳米立方次之,而纳米棒最差. H2-TPR, CO-TPR和O2-TPD等结果也表明, Co3O4纳米片拥有更强的还原性能和脱附氧能力,其次是纳米立方Co3O4.这与XPS结果一致,证实了不同形貌Co3O4纳米催化剂上暴露活性位的数量和表面氧物种的不同是造成彼此间催化CO氧化活性差异的重要原因.此外,通过稳定性测试发现Co3O4纳米片具有较高的催化稳定性,在水蒸气存在的情况下Co3O4纳米片逐渐失活,但随后在干燥条件下其催化活性又逐渐得到恢复.  相似文献   

14.
Cobalt oxide(C0304) with different morphologies was achieved by a simple solution-based method. Various parallel experiments show that several experimental parameters, such as the concentrations of NaOH and ethylene glyeol(EG), play important roles in the morphological controlling of C0304 nanoparticles. A lower concen- tration of NaOH favors quasi-spherical product with a uniform size of about 15 nm, whereas a higher concentration of NaOH generally leads to the formation of nanoplates with wide size distribution. In addition, C0304 nanorods were also obtained partially by introducing a certain amount of EG. A possible mechanism was proposed for the selective formation of C0304 with various morphologies. X-Ray diffraction(XRD), infrared(IR) spectrometry, scanning elec- tron microscopy(SEM), transmission electron microscopy(TEM) and UV-Vis spectrometry were used to characterize the samples.  相似文献   

15.
臭氧催化氧化脱除低浓度甲醛的新方法   总被引:1,自引:0,他引:1  
甲醛作为一种典型的室内挥发性有机污染物,对人体健康危害很大.目前,在可用于室内甲醛脱除的诸多方法之中,臭氧催化氧化法因可于室温下使用廉价的金属氧化物催化剂实现对甲醛的高效脱除,从而受到了科研工作者的广泛关注.然而,考虑到室内甲醛的浓度极低,且存在着长期缓慢释放的特点,传统的臭氧催化氧化法应用于实际的室内甲醛脱除不仅会造成能量的浪费,而且还易因未完全分解臭氧的连续释放带来二次污染问题.为了提高臭氧催化氧化脱除甲醛过程的臭氧利用率,降低能耗,并有效缓解未分解臭氧引起的二次污染,本文将一种循环的甲醛存储-臭氧催化氧化新方法应用于室内低浓度甲醛的脱除.该新方法包含甲醛存储与臭氧催化氧化两个过程,在存储阶段低浓度甲醛吸附存储于催化剂表面,而在臭氧催化氧化阶段臭氧将存储的甲醛氧化为CO2与H2O,并重新释放催化剂表面的吸附位.因负载型氧化锰具有优良的臭氧分解能力,本研究以Al2O3负载的MnOx为催化剂,通过研究前驱体及担载量对甲醛脱除反应的影响,筛选出了最优的MnOx/Al2O3催化剂,并对相对湿度的影响规律进行了考察,最后通过低浓度甲醛存储-臭氧催化氧化循环实验验证了该甲醛臭氧催化氧化新过程的可靠性.我们采用传统的等体积浸渍法,基于不同的前驱体制备MnOx/Al2O3催化剂.XRD表征结果表明,乙酸锰为前驱体制得的MA/Al2O3催化剂中MnOx相主要为Mn3O4(粒径约为6.0 nm);而硝酸锰前驱体所得MN/Al2O3催化剂中则含有MnO2与Mn2O3相,且其MnOx颗粒粒径较大,约为9.5 nm.XPS测试结果表明,MA/Al2O3催化剂含有Mn2+,Mn3+及Mn4+,其中Mn3+与Mn4+的含量分别为75%与12%;而MN/Al2O3催化剂则仅含有Mn3+与Mn4+,含量分别为35%与65%.上述XRD与XPS结果相一致,说明以乙酸锰为前驱体所得催化剂的分散度较高且易形成低氧化态的Mn.甲醛存储-臭氧催化氧化实验结果表明,与Al2O3及MN/Al2O3相比,MA/Al2O3催化剂具有更高的甲醛存储与催化氧化脱除性能.基于MA/Al2O3催化剂,不同Mn负载量下的甲醛存储与臭氧催化氧化实验结果表明,Mn负载量为10 wt%时MA/Al2O3的性能最佳.因而,进一步的实验中我们均选用最优的10 wt%MA/Al2O3为催化剂,其在50%相对湿度下的甲醛存储量为26.9μmol/mL,臭氧催化氧化阶段碳平衡为92%,CO2选择性为100%.相对湿度的影响结果(23℃)则表明,由于水分子与甲醛分子间存在着竞争吸附作用,甲醛存储容量随相对湿度的增加而降低;但因相对湿度增加可建立利于甲醛氧化的新途径,故臭氧催化氧化性能随相对湿度增加而增强.综合考虑,10 wt%MA/Al2O3上甲醛存储-臭氧催化氧化的最优相对湿度为50%.为验证所提出新方法的实用性,我们基于10 wt%MA/Al2O3开展了甲醛存储-臭氧催化氧化的4次循环实验.4次循环实验中的甲醛存储以及臭氧催化氧化处理的规律可基本保持一致.50%相对湿度下,低浓度甲醛(15×10-6)在空速为27000 h-1时的穿透时间为110 min,而在臭氧催化氧化阶段(150×10-6臭氧,空速15000 h-1)仅需约50 min即可实现对存储甲醛的氧化脱除(碳平衡大于92%,CO2选择性100%),表明该新方法较传统的臭氧催化氧化方法臭氧用量可节省60%.  相似文献   

16.
In this work, various Co3O4-ZSM-5 catalysts were prepared by the microwave hydrothermal method (MH-Co3O4@ZSM-5), dynamic hydrothermal method (DH-Co3O4@ZSM-5), and conventional hydrothermal method (CH-Co3O4/ZSM-5). Their catalytic oxidation of dichloromethane (DCM) was analyzed. Detailed characterizations such as X-ray diffractometer (XRD), scanning microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of O2 (O2-TPD), temperature-programmed desorption of NH3 (NH3-TPD), diffuse reflectance infrared Fourier-transform spectra with NH3 molecules (NH3-DRIFT), and temperature-programmed surface reaction (TPSR) were performed. Results showed that with the assistance of microwave, MH-Co3O4@ZSM-5 formed a uniform core-shell structure, while the other two samples did not. MH-Co3O4@ZSM-5 possessed rich surface adsorbed oxygen species, higher ratio of Co3+/Co2+, strong acidity, high reducibility, and oxygen mobility among the three Co3O4-ZSM-5 catalysts, which was beneficial for the improvement of DCM oxidation. In the oxidation of dichloromethane, MH-Co3O4@ZSM-5 presented the best activity and mineralization, which was consistent with the characterizations results. Meanwhile, according to the TPSR test, HCl or Cl2 removal from the catalyst surface was also promoted in MH-Co3O4@ZSM-5 by their abundant Brønsted acid sites and the promotion of Deacon reaction by Co3O4 or the synergistic effect of Co3O4 and ZSM-5. According to the results of in situ DRIFT studies, a possible reaction pathway of DCM oxidation was proposed over the MH-Co3O4@ZSM-5 catalysts.  相似文献   

17.
孙亚会  曲振平  陈丹  王辉  张帆  傅强 《催化学报》2014,(12):1927-1936
分别采用十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)及柠檬酸钠(SC)对羟基磷灰石(HAP)进行了有机改性.柠檬酸钠改性的羟基磷灰石对甲醛催化氧化表现出最好的催化活性,在240℃实现了甲醛完全转化.通过X射线衍射、红外光谱、N2吸附-脱附、扫描电镜和热重/差重等手段对HAP结构进行了表征.结果表明,SC改性使得HAP比表面积和孔体积增加,孔径减小,更有利于吸附及传质,从而提高了其活性.此外,SC改性的HAP中羟基含量更多,更有利于甲醛与羟基之间发生相互作用,这是该样品活性提高的另一个原因.  相似文献   

18.
三维有序介孔二氧化锰制备及其甲醛催化氧化性能   总被引:2,自引:0,他引:2  
空气中的甲醛主要来源于化工、建材、涂料、装潢材料以及机动车尾气.甲醛具有光化学活性,对人体具有致癌致畸作用.高浓度甲醛对人体健康和空气环境危害极大,室内低浓度甲醛对人体也有很大伤害.因此,消除室内、机动车尾气以及工业生产过程中的甲醛非常必要.目前,去除甲醛的方法主要有吸附法、光催化法和催化燃烧法.其中,催化燃烧法具有去除效率高、起燃温度低、适用范围广、设备操作简单以及无二次污染等优点,因而非常适用于去除高浓度和低浓度甲醛.该方法的核心是催化剂的制备和筛选.近年来,用于甲醛催化燃烧的催化剂主要是负载型贵金属和金属氧化物.由于贵金属催化剂成本较高,所以金属氧化物催化剂备受关注.MnO2种类繁多,既包括人工合成的棒状、线状、管状、球状和孔状等形貌,还包括自然界存在的α,β,γ和δ等类型.其中,介孔MnO2因具有较大的比表面积和特殊的孔道而应用于乙醇、甲苯、苯等挥发性有机物的催化氧化反应.目前,尚未见三维(3D)有序介孔MnO2催化氧化甲醛的报道.本文以合成的3D有序介孔KIT-6分子筛为硬模板剂,采用纳米浇筑法制备出3D有序介孔MnO2材料.为了比较,采用水热法合成了α-MnO2和p-MnO2纳米棒.采用X射线粉末衍射、N2吸附-脱附、透射电子显微镜和X射线能谱(XPS)等方法对催化剂进行了表征.在微型固定床石英管反应器上评价了催化剂催化甲醛氧化活性,采用气相色谱(GC)联接热导检测器(TCD)和质谱检测器(MSD)检测产物和反应物的含量.表征结果表明,3D-MnO2复制了KIT-6硬模板的三维有序立方对称介孔结构(ia3d),且具有金红石型β-MnO2晶相,属软锰矿,具有较大的比表面积和双孔分布介孔结构,最大孔径分别位于3.7和11.4nm处.3D-MnO2样品具有清晰的孔道结构,而α-MnO2和p-MnO2纳米棒为无孔的一维纳米单晶材料.另外,3D-MnO2表面暴露了较多的(110)晶面,有利于增加表面Mn4+离子.XPS结果证实3D-MnO2表面存在较多的Mn4+离子,这些Mn4+离子为甲醛催化反应提供了丰富的活性位,有利于提高甲醛氧化活性.评价结果表明,3D-MnO2具有良好的低温催化性能,于130℃即可将甲醛完全转化成CO2和H2O;而在同样条件下,α-MnO2纳米棒和β-MnO2纳米棒分别在140和180℃才能完全转化甲醛.3D-MnO2具有良好的甲醛催化性能主要归因于特殊的介孔结构、较大的比表面积和较多的表面Mn4+离子.  相似文献   

19.
采用溶胶-凝胶法(sol-gel)制备了一系列具有不同RuO2含量的RuO2-Fe2O3催化剂,并将其应用于氨选择性催化氧化(NH3-SCO)研究中。结果表明,所有RuO2-Fe2O3催化剂都表现出较好的低温活性,且RuO2含量对催化剂的NH3催化氧化活性影响显著。此外,利用BET、XRD、H2-TPR和DRIFTS等表征手段研究了催化剂的物理化学性质和催化活性之间的关系。结果表明,RuO2的加入增大了催化剂的比表面积。RuO2与Fe2O3之间存在的协同效应提高了催化剂的氧化还原能力,从而提高了催化剂的氨氧化活性。同时,RuO2含量对催化剂表面酸性影响很大,且催化剂表面主要存在Lewis酸性位点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号