首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着环境污染的日益严重和能源危机的不断加剧, 新能源的开发和利用逐渐成为研究的重点. 在各种已开发的绿色能源技术中, 光伏发电是一种非常有前景的技术. 尽管传统硅基太阳能电池已取得长足进步, 但其性价比与传统能源相比仍有差距. 因此, 开发低成本高效太阳能电池迫在眉睫, 但新型太阳能电池的应用仍受到稳定性差与效率较低的双重考验. 在前期研究基础上, 人们将化学和物理性能优异的单元素二维材料及其衍生物作为电荷传输层引入太阳能电池中, 在改善电池稳定性及提升效率方面取得了积极的效果. 本文综合评述了纳米级单元素二维材料及其衍生物作为太阳能电池电荷传输层的相关研究进展. 这些单元素材料的引入使得所研究的太阳能电池效率得到了显著的提高, 同时也证明该类型电荷传输层的构建为满足现代社会能源需求提供了新技术平台. 文章最后讨论了单元素二维材料在太阳能电池中应用面临的关键挑战和发展前景.  相似文献   

2.
Photocatalytic water splitting using semiconductor photocatalysts has been considered as a “green” process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO2 electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel‐generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high‐efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.  相似文献   

3.
Photovoltaic technology provides a promising approach for solar energy conversion. One significant factor limiting the efficiency is the poor light harvesting of solar energy, which is related to the mismatch between the energy distribution of photons and the absorption of semiconductor materials or dye. Light-conversion phosphors have been explored as spectral converters to improve the light-harvesting ability in sensitized solar cells. Many progressive studies have been conducted to expand the family of light-conversion phosphors and exploit their application in sensitized solar cells, bringing emerging opportunities to develop commercial sensitized solar cells. In this review, we survey the development of light-conversion phosphors in sensitized solar cells. First, the application and conversion mechanism of light-conversion phosphors, including up-conversion phosphors, down-conversion phosphors, up/down conversion phosphors, and long-lasting phosphors, are summarized in detail. After that, the challenging problems and possible solutions of applying light-conversion phosphors to sensitized solar cells are discussed. The review also highlights some new ideas in the development of sensitized solar cells and the application of light-conversion phosphors in other solar technology.  相似文献   

4.
众所周知,能源与环境是当今人类面临的最大难题和挑战,随着世界能源需求的急剧攀升,传统化石资源的不断耗竭,全球温室效应和环境污染的压力日趋严重,发展各种可再生绿色能源成为当今世界最主要的共性问题和研究热点. 太阳能光电转化技术被认为是一种最有希望真正解决未来社会可再生能源和洁净环境问题的先进技术. 太阳可为人类提供取之不尽、用之不竭的巨大能源宝库,每年照射到地球的太阳能量高达174000TW,换言之,只要能以10%效率转化0.1%到达地球表面的太阳能,即可满足全球的能源需求. 当前国际上最热点研究的新型太阳能电池包括染料敏化太阳能电池、有机太阳能电池、量子点太阳能电池及钙钛矿太阳能电池等,这些新型太阳能电池的研究近年来取得了长足的进步,世界上每年发表相关论文超过10000篇,其中中国学者在太阳能光电化学理论、光电转化器件设计、电极材料、有机半导体光伏材料、电解质系统、有机及钙钛矿太阳能电池电极界面修饰层材料等方面开展了大量卓有特色的工作,为推进各种新型太阳能电池的进步和应用做出不菲的贡献. 光电化学是一门研究光与电化学相互作用的交叉学科,是太阳能高效利用中光-电转化和光能-化学能转化的核心理论基础. 自上世纪70年代以来,光电化学理论得到不断发展和完善,为当今蓬勃发展的各种新型太阳能电池和光催化制氢等提供了强有力的理论指导. 然而,随着纳米科技、材料科学及半导体物理等现代科技的飞速发展和多学科深入研究,诸多新型太阳能体系研究的新现象和复杂性仍未能得到圆满解析. 仍亟需进一步从微观水平认识太阳能电化学电池及光电催化的反应本质,发展原位表征和超快时间分辨技术研究光生电子的传输、复合及界面反应等规律及定量关系,为人们设计高光电转化效率的电化学太阳能电池、推进商品化应用提供理论指导. 本专辑围绕光电化学及新型太阳能电池专题,收录了在相关研究领域具有丰富积累和影响的团队所撰写的9篇相关研究进展的综述文章和研究论文,部分反映了我国在新型太阳能电池结构设计、合成方法和性能研究方面的研究进展.希望借助该专刊的出版,能使广大读者更深入地了解我国在新型太阳能电池领域的研究现状、研究趋势和存在的问题及挑战,推动我国光电化学及新型太阳能电池研究的进一步发展. 在此,对本专辑的所有作者、审稿人及编辑部工作人员的卓有成效的工作和付出表示衷心的感谢!  相似文献   

5.
Thin‐film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low‐cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two‐step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one‐step, solvent‐induced, fast crystallization method involving spin‐coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution‐processed thin films yielded an average power conversion efficiency of 13.9±0.7 % and a steady state efficiency of 13 % under standard AM 1.5 conditions.  相似文献   

6.

We have designed and synthesized a new ruthenium complex, [(5‐amino‐1,10‐phenanthroline)bis(4,4′‐dicarboxylic acid‐2,2′‐bipyridine)]ruthenium(II) by introducing two types of ligands, 5‐amino‐1,10‐phenanthroline and 4,4′‐dicarboxylic acid‐2,2′‐bipyridine. We investigated the electronic, spectroscopic, electrochemical, and photovoltaic properties of the Ru(II) complex. The short‐circuit current density and overall solar‐to‐electric energy conversion efficiency of photovoltaic cells made with this Ru(II) complex were found to be 8.9 mA/cm2 and 2.1%, respectively. A series of analogous Ru(II) complexes have also been synthesized and investigated to compare the effects of functional groups on various ligands. HOMO‐LUMO energies and molecular orbital surfaces have been investigated using semiempirical quantum chemical methods.  相似文献   

7.
Solar-driven photothermal antibacterial devices have attracted a lot of interest due to the fact that solar energy is one of the cleanest sources of energy in the world. However, conventional materials have a narrow absorbance band, resulting in deficient solar harvesting. In addition, lack of knowledge on temperature change in these devices during the photothermal process has also led to a waste of energy. Here, we presented an elegant multi-channel optical device with a multilayer structure to simultaneously address the above-mentioned issues in solar-driven antibacterial devices. In the photothermal channel, semiconductor IrO2-nanoaggregates exhibited higher solar absorbance and photothermal conversion efficiency compared with nanoparticles. In the luminescence channel, thermal-sensitive Er-doped upconversion nanoparticles were utilized to reflect the microscale temperature in real-time. The bacteria were successfully inactivated during the photothermal effect under solar irradiation with temperature monitoring. This study could provide valuable insight for the development of smart photothermal devices for solar-driven photothermal bacterial inactivation in the future.  相似文献   

8.
无机材料电子迁移率高、光谱响应范围与太阳光谱匹配,而有机材料价格低廉、合成方法简单、容易制作在基底上,因此在太阳能电池中具有更广阔的应用前景。 目前,阻碍有机太阳能电池发展的主要原因是材料的载流子迁移率低、器件稳定性差、吸收光谱与太阳光谱不匹配,导致光电转换效率较低。 若能将有机、无机材料二者的优点相结合,将可提高有机太阳能电池的能量转换效率。 目前的研究已经取得了一定进展,无机材料在受体层、阴极缓冲层、阳极缓冲层中的应用均不同程度地提高了有机太阳能电池的能量转换效率。 本文综述了目前该领域的研究现状,并对今后的研究提出了展望。  相似文献   

9.
Graphitic carbon nitride (CN) has been widely used as a photocatalyst. Very few researchers have reported the use of CN in quantum dot-sensitized solar cells (QDSCs). In this study, we prepared nitrogen-rich carbon quantum dot (CQD)-embedded CN nanotubes (CCNTs) with freeze-dried urea and CQD precursors. The prepared CCNTs were used as efficient light harvesters in QDSCs for the first time; their use significantly improved the power conversion efficiency (PCE) of the solar cells compared to those of CQD, CN NT, and bulk CN-sensitized solar cells. The CCNT-sensitized solar cell exhibits 1.01% PCE, which is the highest value among carbon-based QDSCs. Moreover, the CCNTs-sensitized device showed superior photostability over those of CQDs-, CN NTs-, and bulk CN-sensitized devices. The improved performance of the CCNT-sensitized solar cell can be attributed to the facilitated photoelectron transport and suppressed charge recombination. The integration of nitrogen-rich CQDs in CCNTs adjusts the band alignment and maximizes the visible light harvest by reducing the energy barriers, which improves the charge collection efficiency of the device.  相似文献   

10.
Exciton dynamics in alternating copolymer/fullerene solar cell blends have been investigated using femtosecond transient absorption spectroscopy. The acceptor concentrations have been varied over a wide range. Experimental data, kinetic modeling and simulations, all indicate that the efficiency of exciton conversion to charges is 100% even at acceptor concentrations as low as 20 wt%. The reported dependence of solar cell efficiency on fullerene concentration may thus arise from other factors. However, there exists an acceptor concentration threshold (5 wt%) below which a substantial fraction of the excitations remain unquenched. The results, we believe are very relevant to optimization of performance efficiency by clever manipulation of morphology. We have also observed exciton–exciton energy transfer in these blends at low acceptor concentrations.  相似文献   

11.
There has recently been a growing interest in dye sensitized solar cells (DSSCs) based on ruthenium metal, but due to the scarcity and high price of ruthenium, design of better and cheaper light adsorbent dyes based on more abundant metal ions is one of the key issues for future development of the DSSCs. Using density functional theory (DFT) and time-dependent DFT we have studied the properties of new and abundant metal ion-based polypyridyl dyes for p-type DSSCs and compared with ruthenium and other scarce metal ions. Molecular geometries, electronic structures, and optical absorption spectra have been calculated using an implicit solvent corresponding to acetonitrile. The calculated fair light harvesting efficiency, high hole injection efficiency and Gibbs free energy for the hole injection and longer excited state lifetime (important for reflecting the efficiency of solar cells) for the new abundant metal ions (V3+ and Cr2+) based dyes could provide promising sensitizers for efficient next generation DSSC's for p-SC.  相似文献   

12.
The requirement of getting continuous electricity at low cost is essential but challenging. Especially in the undeveloped countries there is no sufficient electricity for the people to do their daily regular works. In order to overcome this problem different renewable energy sources are sought and being explored. One of the approaches is to have a cooking system that is energized from the solar power, not directly using a solar cooker but by storing the energy in the form of heat that can be utilized as per requirement. This paper reports the design and fabrication of an alternative system to generate heat using solar radiation. This chulha is helpful in effective heating with the help of solar radiations at lower costs. A cooking technology is presented consisting of a solar panel directly connected to an electric heater inside of a well-insulated chamber. An insulated container with fixed amount of oil is heated up. The heat is found to be retained in the chamber even after sun set which is sufficient for heating water for making tea. The possible causes of temperature drop and possible remedy has been pointed out and discussed in this paper.  相似文献   

13.
A novel architecture of polytetrafluoroethylene (PTFE)-framed TiO2 electrodes is developed for dye-sensitized solar cells. The PTFE-framed TiO2 electrodes with various thicknesses have been successfully fabricated, ranging from 20 to 160 μm. The optimal energy conversion efficiency of 9.04% is achieved with a film thickness of 60 μm. The PTFE-framed structure not only provides tunable film thickness but a reliable and cost-effective way for the mass production of photo-electrodes.  相似文献   

14.
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.  相似文献   

15.
Photocatalytic water splitting to generate hydrogen gas is an ideal solution for environmental pollution and unsustainable energy issues. In the past few decades, many efforts have been made to increase the efficiency of hydrogen production. One of the most important ways is to achieve light absorption in the visible range to improve the conversion efficiency of solar energy into chemical energy, but it still presents great challenges. We here predicted a novel organic film, which can be obtained by polymerizing HTAP molecules, as an ideal material for photocatalytic water splitting. Based on first-principles calculations and Born-Oppenheimer quantum molecular dynamic simulations, the metal-free two-dimensional nanomaterial has been proven to be structurally stable, with a direct band gap of 2.12 eV, which satisfies the requirement of light absorption in the visible range. More importantly, the conduction bands and valence bands completely engulf the redox potentials of water, making the film be a promising photocatalyst for water splitting. This construction method through the topological periodicity of organic molecules provides a design scheme for the photocatalyst for water splitting.  相似文献   

16.
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost‐effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10‐anthraquinone‐2,7‐disulfonic acid (AQDS)/1,2‐benzoquinone‐3,5‐disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L?1 and a solar‐to‐output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.  相似文献   

17.
By using photovoltaic technology, ambient solar light can be directly converted to electricity. The photovoltaic technology has been regarded as one of the most important and promising strategies to resolve the worldwide energy and pollution problems. As one type of photovoltaic technology, polymer solar cells have attracted increasing interest due to their advantages of solution processing capability, low-cost, feasibility to be fabricated on flexible substrates etc. Not until a few years ago, the fullerene derivatives had been dominated the organic photovoltaic field as the most promising acceptor materials for polymer solar cells. However, fullerene-based polymer solar cells have a power conversion efficiency bottleneck due to the relatively fixed energy levels as well as the fixed bandgaps of fullerene derivatives. Therefore, researchers started to develop nonfullerene acceptors which can be used as alternatives to replace the traditional fullerene derivatives. Compared to the fullerene derivatives, nonfullerene acceptors offer several advantages such as stronger light absorption, tunable bandgaps and frontier molecular orbital energy levels. For nonfullerene acceptors, a ladder-type fused ring is usually used as the central core which is an essential building block to tailor the bandgaps and energy levels. Although many fused ring systems have been explored for efficient nonfullerene acceptors, ladder-type angular-shape dithienonaphthalene is seldom reported as the donor unit for nonfullerene acceptors. Furthermore, the impact of thiophene bridge on the optical and photovoltaic properties of the dithienonaphthalene-based nonfullerene acceptors has never been reported. In this context, we report on the design and synthesis of a dithienonaphthalene-based small-molecule acceptor which contains thiophene bridges in between the acceptor terminals and the fused-ring donor core. Compared to the dithienonaphthalene-based small-molecule without the thiophene bridges, the resulting acceptor (DTNIT) exhibits a reduced bandgap of 1.52 eV which makes it more suitable to be blended with the benchmark large bandgap copolymer, poly[(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1, 2-b: 4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione)] (PBDB-T). The reduced band-gap of the resulting nonfullerene acceptor can be attributed to its extended π-conjugation in comparison with the dithienonaphthalene-based acceptor without the thiophene bridges. Inverted polymer solar cells with a device configuration of indium tin oxide/ZnO/PBDB-T:DTNIT/MoO3/Ag were fabricated and characterized. Polymer solar cells based on PBDB-T:DTNIT showed an open circuit voltage of 0.91 V, an enhanced short circuit current of 14.42 mA∙cm−2, and a moderate PCE of 7.05% which is comparable to the PCE of 7.12% for the inverted device based on PBDB-T:PC71BM. Our results not only provide a method to synthesize efficient nonfullerene acceptors with reduced bandgaps, but also offer a bandgap modulation strategy for nonfullerene acceptors.  相似文献   

18.
太阳能电池的光谱响应特性和光电转换效率与光伏材料的微观能带结构及其宏观组装方式密切相关。无论使用哪种光伏材料,普通单结或单层太阳能电池都只能对部分波段的太阳光进行有效利用。宽光谱研究的目标是要使太阳能电池更好地利用太阳光谱所覆盖的全部波段范围的能量,从而提高太阳能电池光电转换效率。本文从化学角度综述了实现宽光谱太阳能电池的基本方法和当前的研究进展,其中包括叠层太阳能电池、中间带太阳能电池、量子点太阳能电池、热光伏太阳能电池、上转换和下转换、分子基柔性太阳能电池等方法。  相似文献   

19.
Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2/O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+/Fe2+. Well‐defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar‐to‐chemical efficiency over 1.9 % and a solar‐to‐hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.  相似文献   

20.
Polymer-fullerene composite solar cells   总被引:2,自引:0,他引:2  
Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer-fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5%, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号