首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

2.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[g,h,i]perylene (BghiP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of both the first electronically excited state and the ground cationic state. Extensive vibronic coupling due to a nearby electronically excited state manifests through strong Franck-Condon (FC) forbidden bands, which are stronger than even the FC allowed bands in the REMPI spectrum. Theoretical calculations using Gaussian are problematic in identifying the electronic configurations of the excited electronic states and predicting the transition energies. However, by setting the keyword for the second excited electronic state, both density functional theory and configuration interaction methods can reproduce the observed spectrum qualitatively. The general agreement significantly helps with the vibrational assignment. The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the intermediate electronic state. In addition, almost all ZEKE spectra exhibit a similar vibrational distribution, and the distribution can be reproduced by an FC calculation from the vibronic origin of the first excited electronic state to the cationic state using Gaussian 09. These results suggest a remarkable structural stability of BghiP in accommodating the additional charge. All observed vibrational bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far-infrared bands for astrophysical applications.  相似文献   

3.
We report studies of supersonically cooled m-aminobenzoic acid using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. Two conformers have been identified and characterized using the hole-burning method in the REMPI experiment. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state (S(1)) of the neutral species and those of the ground state cation (D(0)) have been assigned, and the adiabatic ionization potentials have been determined for both conformers. The REMPI spectra are dominated by in-plane motions of the substituents and ring deformation modes. A propensity of Deltav=0, where Deltav is the change in vibrational quantum number from the S(1) to the D(0) state, is observed in the ZEKE spectra. The origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. Comparisons of these results with those of p-aminobenzoic acid will be analyzed.  相似文献   

4.
We report studies of supersonically cooled 4-aminopyridine (4-AP) using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state (S1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 62291+/-6 cm(-1). The REMPI spectrum of the S1 state is dominated by ring deformation modes and the inversion mode of the amino group, while the ZEKE spectra demonstrate a strong propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S1. In addition, the ZEKE spectra obtained via different vibrational levels of the S1 state contain four common features, corresponding to the activation of four different vibrational modes of the cation. These observations are explained in terms of the structural changes from the ground state to S1 and further to the cation. The vibrational mode distributions in both the REMPI and the ZEKE spectra, the excitation energy of the S1 state, and the ionization potential of 4-AP, are remarkably similar to those of aniline, suggesting that the electronic activity is centered on the ring.  相似文献   

5.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[a]pyrene (BaP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of the first excited state (S(1)) and those of the ground cationic state (D(0)). Similar to pyrene, another peri-condensed polycyclic aromatic hydrocarbon we have investigated, the first two electronically excited states of BaP exhibit extensive configuration interactions. However, the two electronic states are of the same symmetry, hence vibronic coupling does not introduce any out-of-plane modes in the REMPI spectrum, and Franck-Condon analysis is qualitatively satisfactory. The ZEKE spectra from the in-plane modes observed in the REMPI spectrum demonstrate strong propensity in preserving the vibrational excitation of the intermediate state. Although several additional bands in combination with the vibrational mode of the intermediate state are identifiable, they are much lower in intensity. This observation implies that the molecular structure of BaP has a tremendous capability to accommodate changes in charge density. All observed bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far infrared bands for astrophysical applications.  相似文献   

6.
Far infrared (FIR) spectroscopy of polycyclic aromatic hydrocarbons is of particular interest to astrophysics since vibrational modes in this range are representative of the molecular size and shape. This information is hence important for identification of chemical compositions and for modeling of the IR spectrum observed in the outer space. In this work, we report neutral and cation FIR spectroscopy of tetracene vaporized from a laser desorption source. Results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron spectroscopy will be presented. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. The adiabatic ionization potential is determined to be 55 918 +/- 7 cm(-1). Interestingly, all observed vibrational modes can be rationalized based on a simple Huckle calculation, i.e., by observing the addition or elimination of nodal planes due to electronic excitation and/or ionization. Limited by the Franck-Condon principle and the rigidity of the molecular frame of tetracene, only IR forbidden modes are observed in this work.  相似文献   

7.
We report studies of supersonically cooled indan using two-color resonantly enhanced multiphoton ionization and two-color zero-kinetic-energy photoelectron spectroscopy. With the aid of ab initio and density-functional calculations, vibrational modes of the first electronically excited state of the neutral species and those of the cation have been assigned, and the adiabatic ionization energy has been determined to be 68458 +/- 5 cm(-1). Similar to the ground state and the first electronically excited state of the neutral molecule, the ground state of the cation is also proven to be nonplanar, with an estimated barrier of 213 cm(-1) and a puckering angle of 15.0 degrees. These conclusions will be discussed in comparison with a previous study of an indan derivative 1,3-benzodioxole.  相似文献   

8.
We report studies of supersonically cooled p-amino benzoic acid using one-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state S(1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 64 540+/-5 cm(-1). A common pattern involving the activation of five vibrational modes of the cation is recognizable among all the ZEKE spectra. A propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S(1), is confirmed, and the origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. A puzzling observation is the doublet splitting of 37 cm(-1) in the ZEKE spectrum obtained via the inversion mode of the S(1) state. This splitting cannot be explained from our density functional calculations.  相似文献   

9.
The vibrational structures of the electronic ground states ((approximately)X (2)A(2)) of furan, pyrrole, and thiophene cations have been studied by zero kinetic energy (ZEKE) photoelectron spectroscopic method. In addition to the strong excitations of the symmetric a(1) vibrational modes, other three symmetric vibrational modes (a(2), b(1), and b(2)) have been observed unambiguously. These results which cannot be explained by the Franck-Condon principle illustrate that the vibronic coupling and the Coriolis coupling may play important roles in understanding the vibrational structures of the five-membered heterocycle cations. The vibrationally resolved ZEKE spectra are assigned with the assistance of the density function theory calculations, and the fundamental frequencies for many vibrational modes have been determined for the first time. The first adiabatic ionization energies for furan, pyrrole, and thiophene were determined as 8.8863, 8.2099, and 8.8742 eV, respectively, with uncertainties of 0.0002 eV.  相似文献   

10.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

11.
《Chemical physics letters》1985,118(4):444-447
We report the resonance enhanced multiphoton ionization spectrum of SiF between 430 and 492 nm. SiF radicals absorbed at least three photons to generate the observed m/z 47 SiF ions. Two-photon absorption bands from C″2Σ+ ← X 2Π, and C′2Π ← X 2Π, transitions were observed. An intense band from sequential one-photon transitions from the X 2Π1/2(υ″ = 0) state through the A2Σ+ (υ′ = 0) and C″2Σ+ (υ′ = 1) states was observed.  相似文献   

12.
An adaptation of multiphoton ionization spectroscopy is presented in which a single vibrational—rotational level of an excited electronic state is pumped using a dye laser, and a second, independently tunable dye laser beam induces multiphoton ionization from this excited level. Several advantages of this technique are demonstrated using molecular iodine.  相似文献   

13.
《Chemical physics letters》1985,113(2):219-224
Van der Waals molecules comprised of paraxylene (PX) clustered with Ar atoms were formed in pulsed supersonic jet, subjected to two-color resonance enhanced two-photon ionization (2C R2PI), and analyzed in a time-of-flight mass spectrometer. Perturbed S1 states of the complexes display spectral shifts relative to the nascent molecule (PX). The appearance potentials (AP) of PX·Arn clusters were measured for n = 1 to 6. On average, the AP is red-shifted ≈ 120 cm−1 per Ar atom addition, but there are deviations from a smooth trend at the dimer and pentamer.  相似文献   

14.
Weinkauf R  Lehrer F  Schlag EW  Metsala A 《Faraday discussions》2000,(115):363-81; discussion 407-29
In this work we focus on the question to which degree a surplus charge is localized or delocalized in extended molecular systems. Molecules consisting of a flexible tail and the benzene chromophore, such as n-propylbenzene, 2-phenylethyl alcohol and 2-phenylethylamine, are used as model molecules. Their S0-S1 resonance enhanced multiphoton ionization (MPI) spectra containing origin transitions of different conformers appear at similar wavelengths. This shows, that in the neutral the electronic excitation is localized at the benzene chromophore. Geometry differences between the neutral and the cation can be qualitatively derived from intensities of vibrational transitions or the onset behavior in MPI high-resolution photoelectron (MPI-PE) spectra. We identify two possible reasons for structural changes: Charge-dipole interaction and charge delocalization. Whereas both effects can be active for the folded gauche conformers, the charge-dipole interaction is expected to be small for the extended anti conformers and geometry changes are attributed to charge delocalization. Density functional calculations of structures and energies qualitatively confirm the experimental results for all molecules and their conformers. They predict charge delocalization into the end group of below 20% for n-propylbenzene and 2-phenylethyl alcohol. In the case of 2-phenylethylamine the charge is equally shared by the near-isoenergetic charge sites of the benzene chromophore and the amine group.  相似文献   

15.
Photoelectron spectra (≈50 mcV, full width at half maximum) following resonantly enhanced multiphoton ionization of xenon and nitric oxide have been recorded and compared to the previous low-resolution (≈120 mcV) results. Several new features have been resolved and additional experiments, which include iso topic substitution and two-color multiphoton ionization. have been performed.  相似文献   

16.
We report gas-phase vibrational spectroscopy of the ground-state cation of 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TTD) using two-color two-photon zero kinetic energy photoelectron spectroscopy. From the distribution of active vibrational modes and comparisons between the experiment and theoretical simulation, we offer proof that the cationic state and the first electronically excited state have the same D(2d) symmetry.  相似文献   

17.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

18.
The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.  相似文献   

19.
丁酮分子的共振增强多光子电离解离研究   总被引:3,自引:0,他引:3  
利用可调谐染料激光研究了丁酮分子的共振增强多光子电离解离过程,发现在428~448nm激光波段丁酮分子发生的是经4p和4dRydberg态的(3+1)多光子过程。此外,我们还用“梯开关”模型对丁酮母体离子的解离机理和各碎片来源作了详细的分析,分析认为在丁酮母体离子的解离过程中存在H原子重排与电荷的重新分布现象。  相似文献   

20.
Time-resolved photoelectron spectroscopy at low kinetic energies (?5 eV) is applied to dilute iodide solutions with different surface and bulk contributions. The results indicate a pronounced surface sensitivity. Signals assigned to solvated electrons near the liquid surface decay rapidly on a sub-ps timescale. In contrast to the literature, a long-lived surface solvated electron at 1.6 eV binding energy is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号