首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The first X-ray structures of two anomeric N,N-dialkoxyamides (2 and 3) have been obtained, which confirm that they are highly pyramidalized at nitrogen and have long N-CO bonds, a characteristic of other anomeric amides and a consequence of drastically reduced amidicity. The crystals also demonstrate chirality at the amide nitrogen in the solid state. The structures are well-predicted by density functional calculations using N,N-dimethoxyacetamide as a model. The amidicity of N,N-dimethoxyacetamide has been estimated by two independent methods, COSNAR and a new transamidation method, which give almost identical resonance stabilization energies of -8.6 kcal mol(-1) and only 47% that of N,N-dimethylacetamide computed at the same level. The total destabilization is composed of a resonance and an inductive contribution, which we have evaluated separately. The electronegative oxygens at nitrogen are responsible for localization of the nitrogen lone pair on the amide nitrogen, a factor that contributes to a loss of resonance over and above the impact of pyramidalization at nitrogen, as well as the fact that N,N-dimethoxyacetamide is predicted to protonate on the carbonyl oxygen in preference to nitrogen.  相似文献   

2.
Herein, we show that acyclic amides that have recently enabled a series of elusive transition‐metal‐catalyzed N?C activation/cross‐coupling reactions are highly twisted around the N?C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N‐glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α‐carbon atom. The 15N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground‐state twist as a blueprint for activation of amides toward N?C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non‐planar amide bonds.  相似文献   

3.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   

4.
It is a well-established concept that the C-N bond cleavage of carboxamide functions is facilitated by the coordination of a metal ion to the carbonyl oxygen atom. In contrast, the alternative C-N bond activation by coordination of a neutral tertiary carboxamide nitrogen atom has not been studied. We present the first results on the effect of nitrogen pyramidalization in N-coordinated metal complexes on the methanolysis of tertiary carboxamide groups. An analysis of the reactions products obtained from the methanol cleavage of [(N-Acyl-bpa)Cu]2+ (bpa = N,N-bispicolylamine) complexes is presented together with experimental and high-level theoretically calculated structures. The strong effect of different anions on the amide pyramidalization and subsequent C-N-bond cleavage is evaluated. We show that dichloro complexes [(N-Acyl-bpa)CuCl2] have much less activated amide groups than the corresponding triflate species. They should therefore be less reactive. However, [(N-Acyl-bpa)CuCl2] complexes dissociate in solution to give cationic monochloro complexes [(N-Acyl-bpa)Cu(S)Cl]+ (S = solvent molecule). Theoretical calculations show that the amide pyramidalization in the monochloro complexes is equal to that in the corresponding CF3SO3- salts. Consequently, chloro and triflato complexes are cleaved with similar rates and efficiencies. Parallels to and differences in the reactivity of purely organic distorted amides are discussed.  相似文献   

5.
The high pyramidalization of the bicyclic amide nitrogen found in the crystal structure of a dipeptide incorporating (1S,2S,4R)-N-benzoyl-2-phenyl-7-azabicyclo[2.2.1]heptane-1-carboxylic acid has been investigated using quantum mechanical calculations. More specifically, a bottom-up strategy based on the study of model molecules of progressive complexity has been used. First, an appropriate quantum mechanical method has been selected by examining the distortion of the amide bond in three simple model molecules. Next, the amide distortion induced by the norbornane ring has been evaluated by considering three different 7-azabicyclo[2.2.1]heptane amides. After this, the suitability of quantum mechanical calculations to predict the effect of the substituents on the pyramidalization of the bicyclic amide nitrogen has been investigated by comparing experimental and theoretical parameters for a number of compounds. Finally, the factors responsible for amide distortion in the (1S,2S,4R)-N-benzoyl-2-phenyl-7-azabicyclo[2.2.1]heptane-1-carboxylic acid derivative have been elucidated using a hierarchical approach. For this purpose, several derivatives were generated by removing or modifying the substituents attached to the 7-azanorbornane system. Results have been discussed in terms of intramolecular specific interactions.  相似文献   

6.
张明  唐访良  范晓开  徐建芬  陈峰  吴志旭 《分析化学》2012,40(10):1555-1560
基于亲水相互作用液相色谱(Hydrophilic Interaction Liquid Chromatography,HILIC)技术,建立了同时测定环境水样中丙烯酰胺、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺的液相色谱分析方法.水样采用石墨化碳黑固相萃取柱净化,上样1.0 mL,并最终用1.0 mL乙腈洗脱,洗脱液进样色谱分析.选择Waters HILIC色谱柱,以乙腈/水作为流动相,等度洗脱,二极管阵列检测器200 nm条件下检测.在优化的分析条件下,3种酰胺类化合物在11 min内实现基线分离.所有目标化合物浓度在0.05~ 100 mg/L范围内线性良好,相关系数均大于0.9999;检出限达0.01 mg/L.加标回收率为84.1%~106%;相对标准偏差1.8%~10.4%.本方法具有简便快捷、灵敏准确等特点,能够满足环境水样中痕量酰胺类污染物检测的要求.  相似文献   

7.
1-Methyl-4-silatranone could exhibit the structural aspects of a typical silatrane including a short N–Si bond distance reflecting a dative bond. But given the significant amide resonance in a [3.3.3] bridgehead bicyclic lactam, the lone pair could be shared with the carbonyl group leading to a very long N–Si bond, essentially a “non-silatrane.” Ab initio calculations (MP2/6-311 + G*) predict that ground state conformations of this molecule are best regarded as lactams rather than silatranes, the most stable having a calculated N–Si bond length of 2.902 Å and an N–CO bond length of 1.387 Å. The calculated transition state for inversion of the amide ring retains very little amide resonance (N–CO, 1.440 Å). Some of this loss is compensated through tightening of the N–Si bond (2.422 Å), leading to a net energy of activation of ca 8 kcal/mol. Attempts to synthesize 1-methyl-4-silatranone using conventional pathways successful for 1-methylsilatrane [condensations employing N,N-bis(2-hydroxyethyl)glycolamide in place of tris(2-hydroxyethyl)amine] were unsuccessful. This is due to the net loss in resonance energy of the amide reactant relative to that in the [3.3.3] system, the essential absence of the N–Si dative bond, and the rigidity introduced by the planar amide linkage in the starting material. A more likely pathway to successful synthesis should be formation of the amide linkage in the final step.  相似文献   

8.
朱龙华  平磊  雷毅 《化学学报》2005,63(14):1293-1297,i002
测量了N,N-二甲基乙酰胺(DMA)水溶液体系不同温度下全浓度范围的^1H NMR数据,对体系中的缔合情况进行了讨论。应用化学缔合模型求得了各缔合平衡常数K和缔合平衡的△H,结合N,N-二甲基甲酰胺(DMF)和N-甲基乙酰胺(NMA)水溶液的研究结果,发现酰胺自身结构和酰胺浓度是影响酰胺水溶液性质的主要因素。  相似文献   

9.
To clarify the origin of amide-nitrogen of vitamin B12, [1-13C]aminolevulinic acid (ALA) and L-[amide-15N]glutamine were administered to P. shermanii. The 13C-nuclear magnetic resonance spectrum of the vitamin B12 subsequently isolated showed distinct 13C-15N coupling and isotope shift at six amide carbons. However, the C-57 amide carbon showed neither coupling, nor shift. Thus, it was concluded that the nitrogens of 6 amides of the side chain were derived from glutamine and the C-57 amide nitrogen was from threonine.  相似文献   

10.
The relative static permittivity at 1 MHz and high frequency limit permittivity at wavelength of sodium-D line of the binary mixtures of ethanolamine (2-aminoethanol) with alcohols (ethyl alcohol, ethylene glycol and glycerol) and amides (formamide, N,N-dimethylformamide and N,N-dimethylacetamide) have been investigated over the entire concentration range at 30 °C. The excess permittivity and Kirkwood correlation factor of the binary mixtures were determined to explore the hydrogen-bonded hetero-molecular interactions and their dependence on the number of hydroxyl groups of alcohols molecules and the extent of substitution in amides molecules. Results confirm that ethanolamine form weak H-bond interactions with alcohols, N,N-dimethylformamide and N,N-dimethylacetamide, but the dipolar alignments in these mixtures vary with number of hydroxyl group of alcohols and their molecular size. Comparatively strong H-bond interactions were found between ethanolamine and formamide molecules with reduce in number of parallel aligned effective dipoles.  相似文献   

11.
N,N-dialkoxyamides 1c, a virtually unstudied member of the new class of anomeric amides, amides bearing two electronegative atoms at nitrogen, have been synthesised in useful yields directly from hydroxamic esters using phenyliodine(III)bis(trifluoroacetate) (PIFA). Infrared carbonyl stretch frequencies and carbonyl (13)C NMR properties have been reported, which support strong inhibition of amide resonance in these amides. Their thermal decomposition reactions in mesitylene at 155 °C proceed by homolysis to form alkoxyamidyl and alkoxyl free radicals in preference to HERON rearrangements to esters. The reactions follow first-order kinetics and for a series of N,N-dimethoxy-4-substituted benzamides, activation energies of 125-135 kJ mol(-1) have been determined together with weakly negative entropies of activation.  相似文献   

12.
Here we show that amides of bicyclic 7-azabicyclo[2.2.1]heptane are intrinsically nitrogen-pyramidal. Single-crystal X-ray diffraction structures of some relevant bicyclic amides, including the prototype N-benzoyl-7-azabicyclo[2.2.1]heptane, exhibited nitrogen-pyramidalization in the solid state. We evaluated the rotational barriers about the amide bonds of various N-benzoyl-7-azabicyclo[2.2.1]heptanes in solution. The observed reduction of the rotational barriers of the bicyclic amides, as compared with those of the monocyclic pyrrolidine amides, is consistent with a nitrogen-pyramidal structure of 7-azabicyclo[2.2.1]heptane amides in solution. A good correlation was found between the magnitudes of the rotational barrier of N-benzoyl-7-azabicyclo[2.2.1]heptanes bearing para-substituents on the benzoyl group and the Hammett's sigma(p)(+) constants, and this is consistent with the similarity of the solution structures. Calculations with the density functional theory reproduced the nitrogen-pyramidal structures of these bicyclic amides as energy minima. The calculated magnitudes of electron delocalization from the nitrogen nonbonding n(N) orbital to the carbonyl pi orbital of the amide group evaluated by application of the bond model theory correlated well with the rotational barriers of a variety of amides, including amides of 7-azabicyclo[2.2.1]heptane. The nonplanarity of the amide nitrogen of 7-azabicyclo[2.2.1]heptanes would be derived from nitrogen-pyramidalization due to the CNC angle strain and twisting of the amide bond due to the allylic strain.  相似文献   

13.
An indirect method is employed for determining the 15N parameters at the natural abundance level in a series of simple acyclic and cyclic amides. The one bond coupling constant, 1J(15N1H), and the 15N chemical shift are measured as a function of the carbonyl substituent group or the ring size and the nature of the solvent (CCl4 or H2O). These 15N parameters are related to the amide bond structure, the nitrogen configuration and possible intermolecular hydrogen bonding (amide-amide or amide-water).  相似文献   

14.
Activated amide bonds have been attracting intense attention; however, most of the studied moieties have twisted amide character. To add a new strategy to activate amide bonds while maintaining its planarity, we envisioned the introduction of an alkynyl group on the amide nitrogen to disrupt amide resonance by nN→Csp conjugation. In this context, the conformations and properties of N-ethynyl-substituted aromatic amides were investigated by DFT calculations, crystallography, and NMR spectroscopic analysis. In contrast to the cis conformational preference of N-ethyl- and vinyl-substituted acetanilides, N-ethynyl-substituted acetanilide favors the trans conformation in the crystal and in solution. It also has a decreased double bond character of the C(O)−N bond, without twisting of the amide. N-Ethynyl-substituted acetanilides undergo selective C(O)−N bond or N−C(sp) bond cleavage reactions and have potential applications as activated amides for coupling reactions or easily cleavable tethers.  相似文献   

15.
In this study the theoretical Gaussian-2 K(+)/Na(+) binding affinities (enthalpies) at 0 K (in kJ mol(-1)) for six amides in the order: formamide (109.2/138.5) < N-methylformamide (117.7/148.6) < acetamide (118.7/149.5) < N,N-dimethylformamide (123.9/156.4) < N-methylacetamide (125.6/157.7) < N,N-dimethylacetamide (129.2/162.6), reported previously (Siu et al., J. Chem. Phys. 2001; 114: 7045-7051), were validated experimentally by mass spectrometric kinetic method measurements. By monitoring the collision-induced dissociation (CID) of K(+)/Na(+)-bound heterodimers of the amides, the relative affinities were shown to be accurate to within +/-2 kJ mol(-1). With these six theoretical K(+)/Na(+) binding affinities as reference values, the absolute K(+)/Na(+) affinities of imidazole, 1-methylimidazole, pyridazine and 1,2-dimethoxyethane were determined by the extended kinetic method, and found to be consistent (to within +/-9 kJ mol(-1)) with literature experimental values obtained by threshold-CID, equilibrium high-pressure mass spectrometry, and Fourier transform ion cyclotron resonance/ligand-exchange equilibrium methods. A self-consistent resolution is proposed for the inconsistencies in the relative order of K(+)/Na(+) affinities of amides reported in the literature. These two sets of validated K(+) and Na(+) affinity values are useful as reference values in kinetic method measurements of K(+)/Na(+) affinity of model biological ligands, such as the K(+) affinities of aliphatic amino acids.  相似文献   

16.
The energetics of cis-trans proline isomerization in small peptide models have been investigated using the hybrid density functional theory method B3LYP with a 6-31+G* basis set. The molecules studied are models for the phospho-Ser/Thr-Pro substrate for Pin-1, a peptidyl-prolyl isomerase (PPIase) involved in cell division. Pin-1 requires phosphorylation of a Ser or Thr residue adjacent to a Pro residue in the substrate and catalyzes cis-trans isomerization about the proline amide bond. The dihedral angle that would correspond to the reaction coordinate for isomerization of the omega peptide bond was investigated for several small models. Relaxed potential energy scans for this dihedral angle in N-methylacetamide, 1, N,N-dimethylacetamide, 2, acetylpyrrolidine, 3 and acetylproline, 4, were carried out in 20 degrees steps using the B3LYP/6-31+G* level of theory. In addition, similar scans were carried out for 1-4 protonated on the acetylamide carbonyl oxygen. Optimized structures for 1-4 protonated on the amide nitrogen were also obtained at B3LYP/6-31+G*. Relative proton affinities were determined for each site at various angles along the reaction coordinate for isomerization. The relative proton affinities were anchored to experimental gas phase proton affinities, which were taken from the literature for 1 and 2, or determined in an electrospray ionization-quadrupole ion trap instrument using the extended kinetic method for 3 and 4. Proton affinities of 925 +/- 10 and 911 +/- 12 kJ/mol were determined for 3 and 4, respectively. These studies suggest that the nitrogen atom in these amides becomes the most basic site in the molecule at a dihedral angle of ca. 130 degrees . In addition, the nitrogen atoms in 2-4 are predicted to attain basicities in the range 920-950 kJ/mol, making them basic enough to be the preferred site for hydrogen bonding in the Pin-1 active site, in support of the proposed mechanism for PPIases.  相似文献   

17.
A new model of electronic structure of the carboxamide and carboxylate bonds is proposed to account for the diversity of the patterns of structural variation displayed by such bonds in the crystal structures. The geometries of the amide and carboxylate ester fragments retrieved from the Cambridge Crystallographic Data Centre database were examined by means of the regression and principal component analyses. Correlations of the C=O and C-O/C-N bond distances and correlations of the bond distances with the out-of-plane distortions are consistent with the predictions of Pauling's resonance model only in the more extensively substituted esters, secondary amides, and common ring lactams. Surprisingly, in the unsubstituted methyl esters and primary amides, correlations between the bond distances are positive (e.g., both C-N and C=O increase or decrease). Furthermore, for the majority of the less substituted amides and lactams, an increase in pyramidalization at the nitrogen is associated with the shortening of the C-N bond instead of the expected lengthening. Consequently, factor analyses of ther(C=O),r(C-N), ¦ N¦coordinates for the 42 subclasses of amides and lactams reveal three patterns of coupling of structural parameters, these patterns appear to be related to the major types of the amide substitution. A hypothesis explaining this diversity is based on the assumption that structural variation observed in each of the narrowly defined subclasses of amides maps out initial stages of rehybridization accompanying internal rotation, that is, the amide bonds in the crystal structures deform along the rehybridization/rotation path. It is proposed that the positions of the minimum and the saddle point along this path depend on the alkyl substitution of the bond and the size of the embedding ring.  相似文献   

18.
X-Ray data for two N-acyloxy-N-alkoxyamides, a class of direct-acting mutagens, indicate extreme pyramidalisation at the amide nitrogen in keeping with spectroscopic and theoretically determined properties of amides with bisoxosubstitution at nitrogen. The combined electronegativity of two oxygens leads to average angles at nitrogen of 107.8 and 108.1 degrees and [chiN] of 66 degrees and 65 degrees. The sp3 nature of nitrogen results in negligible amide resonance as evidenced by long N-C(O) bonds, high IR carbonyl stretch frequencies, carbonyl 13C NMR data and very low amide isomerisation barriers. In addition, conformations in the solid state support a strong n(O)-sigma*(NOAc), anomeric interaction as predicted by molecular orbital theory. HF/6-31G* calculations on formamide, N-methoxyformamide and N-formyloxy-N-methoxyformamide support these findings.  相似文献   

19.
Metal‐catalyzed reactions of amides proceeding via metal insertion into the N CO bond are severely underdeveloped due to resonance stabilization of the amide bond. Herein we report the first Heck reaction of amides proceeding via highly chemoselective N CO cleavage catalyzed by Pd0 utilizing amide bond ground‐state destabilization. Conceptually, this transformation provides access to a myriad of metal‐catalyzed transformations of amides via metal insertion/decarbonylation.  相似文献   

20.
Metal‐catalyzed reactions of amides proceeding via metal insertion into the N? CO bond are severely underdeveloped due to resonance stabilization of the amide bond. Herein we report the first Heck reaction of amides proceeding via highly chemoselective N? CO cleavage catalyzed by Pd0 utilizing amide bond ground‐state destabilization. Conceptually, this transformation provides access to a myriad of metal‐catalyzed transformations of amides via metal insertion/decarbonylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号