首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES) and Scale-Adaptive Simulation (SAS) are increasingly being used as engineering tools to predict the behaviour of complex industrial flows. Often the flows studied have not been examined previously and the required grid resolution is unknown. Industrial users studying these flows tend to be using commercial CFD codes and do not usually have access to high-performance computing facilities. Due to the significant computing times required, it is difficult to undertake systematic grid-dependence studies. There is therefore a risk that LES, DES and SAS will be performed using overly coarse grids which may lead to unreliable predictions. The present work surveys a number of practical techniques that provide a means of assessing the quality of the grid resolution in large-eddy simulations and related approaches. To examine the usefulness of these techniques, a gas release in a ventilated room is examined using DES and SAS. The grid resolution measures indicate that overall the grids used are relatively coarse. Both DES and SAS model predictions are found to be in poor agreement with experimental data compared to steady and unsteady Reynolds-averaged Navier–Stokes (RANS) results using the SST model. The SAS model also shows the greatest grid sensitivity of the four models tested. The work highlights the need for grid-dependence studies and the potential problems of using coarse grids.  相似文献   

2.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

3.
A computational study of spatially evolving two-dimensional free shear flows has been performed using direct numerical simulation of the Navier–Stokes equations in order to investigate the ability of these two-dimensional simulations to predict the overall flow-field quantities of the corresponding three-dimensional “real” turbulent flows. The effects of inflow forcing on these two-dimensional flows has also been studied. Simulations were performed of shear layers, as well as weak (large co-flow and relatively weak shear) and strong (small co-flow and relatively strong shear) jets. Several combinations of discrete forcing with and without a broadband background spectrum were used. Although spatially evolving direct simulations of shear layers have been performed in the past, no such simulations of the plane jet have been performed to the best of our knowledge. It was found that, in the two-dimensional shear layers, external forcing led to a strong increase in the initial growth of the shear-layer thickness, followed by a region of decreased growth as in physical experiments. The final downstream growth rate was essentially unaffected by forcing. The mean velocity profile and the naturally evolving growth rate of the shear layer in the case of broadband forcing compare well with experimental data. However, the total and transverse fluctuation intensities are larger in the two-dimensional simulations with respect to experimental data. In the weak-jet simulations it was found that symmetric forcing completely overwhelms the natural tendency to transition to the asymmetric jet column mode downstream. It was observed that two-dimensional simulations of “strong” jets with a low speed co-flow led to a fundamentally different flow with large differences even in mean velocity profiles with respect to experimental data for planar jets. This was a result of the dominance of the two-dimensional mechanism of vortex dipole ejection in the flow due to the lack of spanwise instabilities. Experimental studies of planar jets do not show vortex dipole formation and ejection. A three-dimensional “strong”-jet simulation showed the rapid evolution of three-dimensionality effectively preventing this two-dimensional mechanism, as expected from experimental results. Received: 25 November 1996 and accepted 17 April 1997  相似文献   

4.
A lean premixed propane/air bluff-body stabilized flame (Volvo test rig) is calculated using the Scale-Adaptive Simulation turbulence model (SAS) and Large-Eddy simulations (LES) as well as the conventional Reynolds-averaged approach (RAS). RAS and SAS are closed by the standard k-?? and the k-ω Shear Stress Transport (SST) turbulence models, respectively. The conventional Smagorinsky and the k-equation sub-grid scales models are used for the LES closure. Effects of the sub-grid scalar flux modeling using the classical gradient hypothesis and Clark’s tensor diffusivity closures both for the inert and reactive LES flows are discussed. The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction. It assumes that molecular mixing and the subsequent combustion occur in the ’fine structures’ (smaller dissipative eddies, which are close to the Kolmogorov scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the ’fine structures’ are evaluated using different turbulence models (RAS, SAS and LES). The finite-rate chemical kinetics is taken into account by treating the ’fine structures’ as constant pressure and adiabatic homogeneous reactors, calculated as a system of ordinary-differential equations (ODEs) described by a Perfectly Stirred Reactor (PSR) concept. Several further enhancements to model the PSRs are proposed, including a new Livermore Solver (LSODA) for integrating stiff ODEs and a new correction to calculate the PSR time scales. All models have been implemented as a stand-alone application \(\text {edcPisoFoam}\) based on the OpenFOAM technology. Additionally, several RAS calculations were performed using the Turbulence Flame Speed Closure model in Ansys Fluent to assess effects of the heat losses by modeling the conjugate heat transfer between the bluff-body and the reactive flow. Effects of the turbulence Schmidt number on RAS results are discussed as well. Numerical results are compared with available experimental data. Reasonable consistency between experimental data and numerical results provided by RAS, SAS and LES is observed. In general, there is satisfactory agreement between present LES-EDC simulations, numerical results by other authors and measurements without any major modification to the EDC closure constants, which gives a quite reasonable indication on the adequacy and accuracy of the method and its further application for turbulent premixed combustion simulations.  相似文献   

5.
The present Note reports on numerical modeling of shallow flows in coastal areas. Successful numerical simulations of such flows should be able to cope with strong irregularities of the bathymetry and to reproduce the covering/uncovering (wetting/drying) of tidal flats due to the tidal oscillations of the free surface. Also, adoption of large time steps is necessary to simulate phenomena which last actually several days or months. In the present study, a new numerical model based on an implicit resolution of the shallow water equations is proposed. A penalty method has been employed for numerical treatment of dry zones emerging during the wetting and drying processes. The capability of the present model has been verified by comparison with standard test cases. Further applications and comparisons have been also carried out to simulate the tidal propagation in the Arcachon lagoon. To cite this article: A. Le Dissez et al., C. R. Mecanique 333 (2005).  相似文献   

6.
A new preferential vibration-dissociation-exchange reactions coupling model – labelled CVDEV – resulting from an extension of the well-known Treanor and Marrone CVDV model, has been derived to take into account the coupling between the vibrational excitation of the and molecules and the two Zeldovich exchange reactions. Analytical expressions for the exchange reactions coupling factor and for the average vibrational energy lost – or gained – by a molecule through an exchange reaction have been developed. The influence of such a coupling has been shown by means of numerical simulations of hypersonic air flows through normal and bow shock waves. Code-to-code comparisons between our model and other recent approaches have been conducted. The infrared radiation of nitric oxide behind a normal shock wave resulting from computations with the CVDEV model has been compared with other coupling model results and to recent shock tube experimental data. These comparisons have shown a good agreement of our model results with the experimental data. In this context, the results show the prominent influence of vibration coupling on the first Zeldovich reaction, and the absence of vibration coupling effects on the second Zeldovich reaction. Received 30 June 1997 / Accepted 3 December 1997  相似文献   

7.
We give an overview on the usage of computer simulations in industrial turbulent dispersed multiphase flows. We present a few examples of industrial flows: bubble columns and bubbly pipe flows, stirred tanks, cyclones, and a fluid catalytic cracking unit. The fluid catalytic cracking unit is used to illustrate the complexity of the physical phenomena involved, and the possibilities and limitations of the different approaches used: Eulerian–Lagrangian (particle-tracking) and Eulerian–Eulerian (two-fluid). In the first approach, the continuous phase is solved using either RANS simulations (Reynolds-Averaged Navier–Stokes simulations) or DNS/LES (Direct Numerical Simulations/Large-Eddy Simulations), and the individual particles are tracked. In the second approach, the dispersed phase is averaged, leading to two sets equations, which are quite similar to the RANS equations of single-phase flows. The Eulerian–Eulerian approach is the most commonly used in industrial applications, however, it requires a significant amount of modelling. Eulerian–Lagrangian RANS can be simpler to use; in particular in situations involving complex boundary conditions, polydisperse flows and agglomeration/breakup. The key issue for the success of the simulations is to have good models for the complex physics involved. A major weakness is the lack of good models for: the turbulence modification promoted by the particles, the inter-particle interactions, and the near-wall effects. Eulerian–Lagrangian DNS/LES can play an important role as a research tool, in order to get a better physical understanding, and to improve the models used in the RANS simulations (either Eulerian–Eulerian or Eulerian–Lagrangian).  相似文献   

8.
The development of new aeronautic projects require accurate and efficient simulations of compressible flows in complex geometries. It is well known that most flows of interest are at least locally turbulent and that the modelling of this turbulence is critical for the reliability of the computations. A turbulence closure model which is both cheap and reasonably accurate is an essential part of a compressible code. An implicit algorithm to solve the 2D and 3D compressible Navier–Stokes equations on unstructured triangular/tetrahedral grids has been extended to turbulent flows. This numerical scheme is based on second-order finite element–finite volume discretization: the diffusive and source terms of the Navier–Stokes equations are computed using a finite element method, while the other terms are computed with a finite volume method. Finite volume cells are built around each node by means of the medians. The convective fluxes are evaluated with the approximate Riemann solver of Roe coupled with the van Albada limiter. The standard k–ϵ model has been introduced to take into account turbulence. Implicit integration schemes with efficient numerical methods (CGS, GMRES and various preconditioning techniques) have also been implemented. Our interest is to present the whole method and to demonstrate its limitations on some well-known test cases in three-dimensional geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal–tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.   相似文献   

10.
A new hybrid RANS/LES approach with scale-adaptive capabilities is developed. The blending function in the SST model is adopted to prevent the invasion of the von Karman length scale to the RANS region, and the compressibility correction proposed by Wilcox is incorporated to produce a realistic shear layer development in compressible flows. The new model is validated for a subcritical flow past a circular cylinder and a supersonic base flow. Time-averaged turbulent statistics predicted by the new model show fairly good agreement with the experimental data, slight improvements over DES simulations, and are much better than SAS results. The main advantage of the new model over the DES method is that the distribution of the blending function reflects local vortex structures instead of grid spacing in the turbulent wake. The sequence of the effect intensity of the compressibility correction from strong to weak is SAS, the new model and DES.  相似文献   

11.
Through an improved ε transport equation, a major quality enhancement of the cubic k–ε model, earlier developed in[13], is obtained. The ε-equation of [13],yielding good results for wall-bounded and rotating flows, is combined with the one derived by Shih et al. [20], which produces good results for free shear flows (e.g. the plane jet–round jet anomaly is resolved).Results are presented for the following flows: fully developed stationary and rotating channel and pipe, backward-facing step, sudden pipe expansion, smooth channel expansion and contraction, plane and round jet. Heat transfer predictions in turbulent impinging jets are also discussed. Accurate results are obtained for the mean flow quantities for all test cases, without case dependent model tuning. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k − ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.  相似文献   

13.
Time-resolved simulations of simple shear flows, such as boundary layers and channel flows, are often used as precursor simulations that provide the inflow-boundary conditions for simulations of turbulent flows in and around more complex geometries. For both the precursor and main simulations, the accuracy of the calculated mean flow relies on the simulations being run for long enough to contain the full spectrum of turbulent processes, resulting in a physically valid statistical representation. The time scale needed to achieve convergence of statistics from fundamental studies of simple shear flows is based on data that is averaged in spatial directions in which the flow geometry is invariant—i.e. directions in which homogeneity is expected to be the limiting case. This paper reports and discusses features that represent significant departures from spatial homogeneity of the flow in such a direction, that persist on this time scale, thereby limiting the spatial uniformity of a simulated turbulent inflow. The persistence and size of the features is quantified. A range of simulations for different combinations of domain dimensions and flow parameters has been performed with two independent codes (DNS and LES) to explore how the persistence and size are controlled. While no definitive physical mechanism has been identified, it is suggested that the features may be related to experimental observations of persistent structures in wall-bounded flows.  相似文献   

14.
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES–RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196–205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES–RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES–RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.   相似文献   

15.
The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. With this in view, a k-? model with wall functions has been introduced in a mixed finite volume/finite element method. The numerical method has been developed to deal with compressible flows but is also able to compute nearly incompressible flows. The physical model and the numerical method are first described, then validation results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp are presented. Comparisons are performed with experimental data and with other numerical results. These simulations show the ability of the present method to predict turbulent flows, and this method will be applied to simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more sophisticated turbulence model.  相似文献   

16.
In this article, a computational fluid dynamics algorithm is presented for simulations of complex unsteady flows around rigid moving bodies using an unstructured overset-grid method. For this purpose, a highly automated, three-dimensional, tetrahedral, unstructured overset-grid method is developed with one-cell-width overlapping zone in order to model the arbitrary geometries for steady and unsteady flow simulations. A method has been described to obtain the inter-grid boundaries of the one-cell-wide overlapping zone shared by a background grid and a minor grid. In the overset-grid methodology, vector intersection algorithm and bounding box techniques have been utilised. The mesh refinement and overset-scheme conservation studies proved the accuracy and efficiency of the method developed here. The applications of the developed algorithms were also performed through simulations that included complex internal flows around a flow-control butterfly valve as well as flows in an internal combustion engine with a moving piston. Lastly, validations with experimental data were conducted for both steady and unsteady flows around rigid bodies with relative motions.  相似文献   

17.
Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary conditions for the computation of small-scale urban canopy flows requires a continuous specification of appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating such turbulence is needed. Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying exponentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as a suitable technique for large eddy simulations computation of spatially developing flows. The artificially generated turbulent inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more efficient than, for example, Klein’s (J Comp Phys 186:652–665, 2003) or Kempf et al.’s (Flow Turbulence Combust, 74:67–84, 2005) methods because at every time step only one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of two-dimensional data with the appropriate spatial correlations. These data are correlated with the data from the previous time step by using an exponential function based on two weight factors. The method is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes (a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has been gained in using this method to couple weather scale flows and street scale computations.  相似文献   

18.
The effect of physical variability and uncertainty in model correlations on laminar-turbulent transition in transonic flows is computed using two different Stochastic Collocation methods. Physical variability in the boundary conditions is first investigated for a flow over a flat plate with and without pressure gradient to quantify the uncertainties on the skin friction distribution along the plate surface. Since the laboratory conditions for the flat plate test cases are well defined and the applied transition model has been tuned for these cases, good agreement with experiments is achieved and the variability in the output is low. The second investigated cases exhibit boundary layer transition on the surface of a highly loaded turbine guide vane under transonic flow conditions. Comparisons between the predicted and measured wall heat transfer are used to quantify uncertainties in the free stream turbulence and the model correlations that accounts for compressibility effects on the onset and extension of the bypass transition. The computational results show that the uncertainties have a significant impact on the transition location for the turbine guide vane simulations and, consequently, on the reliability of the predictions for compressible flows. The output uncertainty accounts to a large extent for the difference between the deterministic simulation and the experiments. The results from the Simplex Stochastic Collocation method are computationally more efficient than those of the Stochastic Collocation based on Clenshaw–Curtis quadrature.  相似文献   

19.
This paper deals with reducing the number of spatial dimensions of the models used to solve stable and unstable miscible flows in saturated and homogeneous porous media. Unstable miscible displacements occur when a fluid displaces another fluid of higher viscosity, with which it can fully mix. Stable flows occur if the displaced fluid is less viscous than the displacing one. First, a 1D-averaged model is identified, capable of accurately describing unstable flows at high Péclet numbers. Second, another 1D-averaged model is determined, capable of accurately predicting miscible displacements at low Péclet numbers. Third, a new model is proposed, for any Péclet number and for both stable and unstable flows, as a combination of the previous two models. This combination involves three parameters whose values depend on the dimensionless numbers of the problem, namely, the viscosity ratio M, the Péclet number Pe, the aspect ratio A, and the dispersion length ratio ε. These parameters are computed for several values of M, Pe, A with ε=1 by matching results from direct 2D simulations, obtained from a numerical model previously validated against experimental data. It is found that a 1D-averaged model combining an extended version of the Todd–Longstaff model and the diffusive term of the 1D-miscible model forms an accurate general model for miscible displacements in homogeneous porous media. This paper also provides a large set of data computed from high-resolution 2D simulations of unstable miscible displacements.  相似文献   

20.
This paper deals with some unsteady unidirectional transient flows of generalized Burgers’ fluid in an annular pipe. Exact solutions of some unsteady flows of generalized Burgers’ fluid in an annular pipe are obtained by using Hankel transform and Laplace transform. The following two problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in a annulus. The well known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid, a second grade fluid and an Oldroyd-B fluid appear as limiting cases of our solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号