首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Akbay C  Gill NL  Agbaria RA  Warner IM 《Electrophoresis》2003,24(24):4209-4220
An achiral monomeric surfactant (sodium 10-undecenyl sulfate, SUS) and a chiral surfactant (sodium 10-undecenoyl L-leucinate, SUL) were synthesized and polymerized individually to form poly-SUS and poly-SUL. These surfactants were then copolymerized at various molar ratios to produce a variety of copolymerized surfactants (CoPSs), possessing both achiral (sulfate) and chiral (leucinate) head groups. The CoPSs, poly-SUS, poly-SUL, and sodium dodecyl sulfate were characterized using several analytical techniques. The aggregation numbers of the polymeric surfactants and the partial specific volumes were determined by the use of fluorescence quenching and density measurements, respectively. These polymeric surfactants were investigated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC) for the separation of chiral and achiral solutes. Solute hydrophobicity was found to have major influence on the MEKC retention of alkyl phenyl ketones. In contrast, hydrogen-bonding ability of benzodiazepines is the major factor that governs their retention, but hydrophobicity has an insignificant effect on MEKC retention of benzodiazepines.  相似文献   

2.
Four novel chiral anionic surfactants having carbohydrate hydrophilic heads, sodium n-dodecyl 1-thio-beta-D-glucopyranoside 6-hydrogen sulfate (6-betaGlcD), sodium n-dodecyl 1-thio-beta-L-glucopyranoside 6-hydrogen sulfate (6-betaGlcL), sodium n-dodecyl 1-thio-beta-L-fucopyranoside 3-hydrogen sulfate (3-betaFucL), and sodium n-dodecyl 1-thio-alpha-L-rhamnopyranoside 3-hydrogen sulfate (3-alphaRhaL), were synthesized by selective sulfation of the corresponding thioglycosides. Their CMC determined by fluorescence using pyrene as a probe in water was 1.3-2.7 mM. These surfactants found to be useful as chiral selectors for enantiomeric separation by MEKC. The enantiomeric separation was optimized with respect to pH, buffer concentration, and surfactant concentration. Under the optimized conditions (50 mM phosphate buffer at pH 6.5, 30 mM surfactant, 20 kV), the enantiomeric separations of five dansylated amino acids (Dns-AAs) were achieved within approximately 20 min with the migration order of Val相似文献   

3.
A review surveying enantiomer separations by micellar electrokinetic chromatography (MEKC) using chiral surfactants is described. MEKC is one of the most popular techniques in capillary electrophoresis, where neutral compounds can be analyzed as well as charged ones, and the use of chiral micelles enable one to achieve the enantioseparation. The chiral MEKC systems are briefly reviewed according to the types of chiral surfactants along with typical applications. As chiral micelles or pseudostationary phases in MEKC, various natural and synthetic chiral surfactants are used, including several low-molecular-mass surfactants and polymerized surfactants or high-molecular-mass surfactants. Cyclodextrin modified MEKC using chiral micelles is also considered.  相似文献   

4.
Three different chiroptical spectroscopic methods, namely, optical rotation, electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) have been evaluated for studying the aggregation of sodium dodecylsulfate (SDS), an achiral surfactant, using garcinia acid disodium salt (GADNa) as a chiral probe. The specific rotation and ECD of GADNa are found to be altered by the aggregation of SDS, suggesting for the first time that achiral surfactants can be characterized with chiroptical spectroscopy using appropriate chiral probes. In addition, a chiral compound, fluorenyl methyloxy carbonyl l-leucine sodium salt (FLNa) is found for the first time to behave as a surfactant in water, with 205 ?(2) surface area per molecule at the air-water interface, critical micelle concentration (CMC) of 0.18 M, and Gibbs energy of micellization of -14 kJ/mol. The specific rotation of FLNa in water is found to increase with concentration beyond CMC, suggesting the formation of chiral aggregates. Different conformations of FLNa amenable to micellization have been identified using quantum chemical conformational analysis and their specific rotations calculated. The formation of lamellar aggregates of FLNa in water is suggested to be the cause for increase in specific rotation with concentration beyond CMC.  相似文献   

5.
Rizvi SA  Shamsi SA 《Electrophoresis》2005,26(21):4172-4186
Four alkenoxy leucine-based surfactants with C8-C11 chains containing a terminal double bond, and one C11 chain surfactant with a terminal triple bond are synthesized and characterized in monomeric and polymeric forms. These polymeric pseudophases are then utilized to study the influence of chain length and DP for the enantioseparations of seven beta-blockers in MEKC. Variations in chain length and concentration of polymeric surfactants showed significant effects on the chiral resolution (Rs) and efficiency (N). A relatively large elution range combined with the highest polarity and aggregation number (A) but the lowest retention time, partial specific volume, and optical rotation generated with C8-polymeric surfactant results in simultaneous enantioseparation of all seven beta-blockers with higher N and R(s). In particular, highly hydrophobic beta-blockers are better resolved with shorter hydrocarbon chain even at higher surfactant concentration, which is unachievable with longer chain surfactant. On the other hand, polymer derived from C11-triple bond provided smaller A value compared to C11-double bond surfactant. However, chiral Rs of hydrophobic beta-blockers are still achievable with the C11-triple bond surfactant with enhanced N and shorter analysis time. In addition, effect of polymerization concentration is evaluated by polymerizing all five surfactants at five times their respective CMCs and 100 mM equivalent monomer concentrations. Polymerization of shorter chain (C8 and C9) double-bonded surfactants at five times their respective CMCs results in higher A values with better chiral Rs and N compared to the same two surfactants polymerized at 100 mM.  相似文献   

6.
以4种不同的N-长链烷酰-L-氨基酸胶束为手性选择剂,对3种不同性质的手性化合物(α-氯代丙酰替苯胺,2-氨基-3-对硝基苯基-1,2-丙二醇和华法林)的毛细管胶束电动色谱分离进行研究.结果表明,手性表面活性剂中不同的氨基酸残基和烷基链的长度对分离影响较大;随手性表面活性剂浓度增加,溶质保留时间增大,分离度增加,不同溶质的最佳分离浓度在100~150mmol/L之间;pH对电中性手性化合物分离影响不大,但对酸性或碱性手性化合物的分离影响较大.在选定的条件下,3种样品均在20min内完全分离,分离柱效达1×105理论板数/m.  相似文献   

7.
The behavior in solution of a series of amino acid-based surfactants having two carboxyl groups separated by a spacer of one, two, or three carbon atoms has been investigated. All three surfactants precipitated on addition of acid, but the aspartate surfactant (with a two-carbon spacer) was considerably more resistant to precipitation than the aminomalonate surfactant (one-carbon spacer) and the glutamate surfactant (three-carbon spacer). The interactions with the monovalent counterions lithium, sodium, and potassium were investigated by conductivity. It was found that lithium ions bound the strongest and potassium ions the weakest to the surfactant micelles. These results were interpreted using the hard and soft acid-base theory. Comparing the three surfactants with respect to binding of one specific counterion, sodium, showed that the aminomalonate surfactant, which has the shortest spacer, bound sodium ions the strongest and the glutamate surfactant, which has the longest spacer, had the lowest affinity for the counterion. Also that could be explained by the hard and soft acid-base concept. The glutamate surfactant was found to be considerably more resistant to calcium ions than the two other surfactants. This was attributed to this surfactant forming an intermolecular complex with the calcium ion at the air–water interface while the aminomalonate and the aspartate surfactants, with shorter distance between the carboxylate groups could form six- and seven-membered intramolecular calcium complexes.  相似文献   

8.
A chiral amino acid-based monomeric and polymeric surfactant, sodium oleyl-L-leucylvalinate) (L-SOLV) and poly(sodium oleyl-L-leucylvalinate) (poly-L-SOLV) were synthesized and used for chiral separations in micellar electrokinetic chromatography (MEKC). Poly-L-SOLV was used successfully in the separation of various enantiomers of neutral, acidic, and basic analytes such as 1,1'-bi-2-napthol, 1,1'-binaphthyl-2,2'-diamine, benzoin, hydrobenzoin, benzoin methylether, warfarin, and coumachlor obtaining well-resolved peaks but with only partial separation of temazepam. In addition, the atropisomer 1,1'-binaphthyl-2, 2'-dihydrogen phosphate was chosen to study the applicability of the polymeric surfactant over a wide range of parameters such as concentration, temperature, voltage, and pH. The most striking characteristic of this new surfactant is its high hydrophobicity. It is favorable to interactions with hydrophobic chiral analytes, and thus may provide better chiral recognition for the compounds.  相似文献   

9.
Rizvi SA  Shamsi SA 《Electrophoresis》2003,24(15):2514-2526
Two amino acid-based alkenoxy micelle polymers were synthesized for this study. These include polysodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) and polysodium N-undecenoxy carbonyl-L-isoleucinate (poly-L-SUCIL). The polymerization time and concentration of the synthesized micelle polymers were optimized by (1)H-nuclear magnetic resonance (NMR) and capillary electrophoresis (CE) experiments. Detailed physicochemical properties ((1)H NMR, critical micelle concentration (CMC), optical rotation, partial specific volume, aggregation number, and polarity) were determined, and these molecular micelles were introduced as a pseudostationary phase in micellar electrokinetic chromatography to study the molecular recognition and to develop a method for simultaneous separation of eight chiral beta-blockers. It is found that poly-L-SUCL gives overall better chiral resolution and wider chiral window than poly-L-SUCIL. After optimizing the type of micelle polymer, injection size and temperature, simultaneous separation and enantioseparation of eight beta-blockers were achieved in less than 35 min. A comparison with the amide-type surfactants of the same polar head group and alkyl chain length showed that carbamate-type surfactants always work better than the corresponding amide-type surfactant.  相似文献   

10.
A new type of chiral surfactant, sodium maleopimaric acid (SMA), was synthesized, and employed for the enantioselective micellar electrokinetic chromatographic (MEKC) separation of amino acid enantiomers derivatized with naphthalene-2,3-dicarboxaldehyde (NDA-D/L-AAs). The effect of the surfactant concentration, type and concentration of the BGE, and buffer pH on the resolution was studied, and optimized conditions were used to evaluate the ability of this new surfactant to perform chiral separations toward NDA-D/L-AAs by MEKC. Enantiomeric separations of NDA-D/L-AAs were achieved with a running buffer consisting of 100 mM borate (pH 9.5) and 20 mM SMA in a 58.5 cm length x 50 microm id capillary. Under the conditions selected, two pairs of tested amino acid enantiomers including NDA-D/L-trptophan (Trp) and NDA-D/L-kynurenine (Kyn) were resolved.  相似文献   

11.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was applied to the enantioseparation of three binaphthyl derivatives using neutral CDs (i.e., beta- and gamma-CD) in combination with various chiral amino acid-based polymeric surfactants (PSs). Both the D- and L-configurations of poly(sodium N-undecanoyl alaninate), poly(sodium N-undecanoyl leucinate), and poly(sodium N-undecanoyl valinate) (poly(L-SUV)) were synthesized. The retention behavior of the three binaphthyl derivatives under optimum electrophoretic conditions using a single chiral additive (PS or CD) is discussed. In addition, the effect of CD cavity size and stereochemical configuration of polymeric surfactants on selectivity (alpha) and resolution (Rs) was investigated. The enantioseparation of (+/-)1,1'-binaphthyl-2,2'-diamine gave a reversal of enantiomeric order when using beta-CD in combination with any of the three D-configuration PS. However, better enantioseparation is obtained when using the corresponding L-configuration PS with beta-CD. A reversal of migration order (RMO) for the enantiomers of (+/-)1,1'-bi-2-naphthol was observed upon the addition of 10 mM gamma-CD to poly(L-SUV). However, no RMO of (+/-)1,1'-bi-2-naphthol was seen when either beta-CD or gamma-CD was combined with D-PS. The enantiomers of (+/-)1,1'-binaphthyl-2,2'-diyl hydrogen phosphate showed little enantioselective behavior toward the PS alone. However, combined D- or L-PS and beta-CD or gamma-CD systems gave increased Rs and alpha values. The chiral recognition of binaphthyl derivatives observed resulting from the various combinations of two chiral selectors is discussed.  相似文献   

12.
The ability of a series of non-ionic dodecyl poly(ethylene oxide) surfactants to form micelles in a variety of protic ionic liquids (PILs) was investigated using small and wide angle X-ray scattering (SAXS/WAXS). The C(12)E(n) surfactants with n = 3-8 were examined in PILs which contained either an ethyl, diethyl, triethyl, butyl, pentyl, ethanol or pentanol-ammonium cation in conjunction with either a nitrate or formate anion. The ability of the PILs to support micelles of these surfactants was highly dependent on their liquid nanostructure. The PILs containing hydroxyl groups on the cations were not nanostructured and had very low surfactant solubility (<1 wt%). The highly nanostructured PILs with butylammonium or pentylammonium cations contain large non-polar domains, and had excellent surfactant solubility, but due to the greater hydrocarbon solubility they had insufficient drive from the "solvophobic effect" to enable micelle formation. The PILs of ethylammonium nitrate (EAN), propylammonium nitrate (PAN), diethylammonium formate (DEAF) and triethylammonium formate (TEAF) had smaller non-polar domains, and all supported micelle formation below 20 wt% surfactant. The critical micelle concentration (CMC) of surfactants in EAN were two orders of magnitude greater than in water. The minimum molecular areas of the poly(ethylene oxide) head groups at the air/ionic liquid interface, A(min), were significantly larger in EAN than in water. The SAXS patterns from the micelles present in EAN fitted well to ellipsoids, whereas the micelles present in PAN fitted well to spheres. The nanostructure of select PILs was also influenced by the presence of surfactants.  相似文献   

13.
Micellar electrokinetic chromatography (MEKC) was investigated for the enantiomeric separations of three binaphthyl derivatives ((+/-)-1,1'-bi-(2-naphthol) (BOH), (+/-)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BNP), and (+/-)-1,1'-binaphthyl-2,2'-diamine (BNA)) using two recently synthesized chiral polymeric surfactants (polysodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) and polysodium N-undecenoxy carbonyl-L-isoleucinate (poly-L-SUCIL)) in our laboratory. Enantiomeric separation (resolution and selectivity) of the binaphthyl derivatives was influenced by polymerization concentration of the monomeric surfactant, pH, type and concentration of the background electrolyte (BGE) as well as concentration of the polymeric surfactant. Two BGEs (dibasic phosphate and Tris-borate) were compared for this study. The use of dibasic phosphate as BGE in poly-L-SUCL provides baseline resolution of (+/-) BOH and (+/-) BNP, however, no resolution and selectivity at all was observed for (+/-) BNA. A similar approach was adopted with Tris-borate-poly-L-SUCL system at fixed pH 10.1, which resulted in baseline resolution of all three binaphthyl derivatives. Although R(s) of binaphthyl derivatives was always higher and electroosmotic flow (EOF) was always lower using Tris-borate than with dibasic phosphate, the selectivity values for the two buffer systems did not differ significantly. In addition, it was found that poly-L-SUCL provided better enantiomeric resolution and selectivity for (+/-) BOH and (+/-) BNA, while poly-L-SUCIL provided enhanced enantiomeric resolution but similar enantioselectivity for (+/-) BNP. This indicates that the depth of analyte penetration into the palisade layer and the micellar core are responsible for chiral recognition of hydrophobic analyte (e.g., (+/-) BOH, and (+/-) BNA) whereas for moderately hydrophobic analyte (e.g., (+/-) BNP) interaction with the polar head group seems to dictate chiral recognition. Simultaneous enantioresolution of all three binaphthyl derivatives was possible in a single electrophoretic run using either poly-L-SUCL or poly-L-SUCIL. Further comparison of the two polymeric surfactants showed that poly-L-SUCL provided slightly longer analysis time than poly-L-SUCIL but the use of the former polymeric surfactant should be preferred due to its ability to provide complete baseline resolution and higher selectivity of all the three atropisomers with a wider chiral window.  相似文献   

14.
Ro KW  Hahn JH 《Electrophoresis》2005,26(24):4767-4773
Precolumn derivatization and chiral separation of DL-amino acids based on diastereomerization have been performed on an integrated poly(dimethylsiloxane) microchip. Diastereomeric derivatives were formed in a microfabricated precolumn reactor by the reaction of amino acid enantiomers with o-phthaldialdehyde/2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose (OPA/TATG), and separated by MEKC in an achiral environment without chiral selectors in the running buffer. Optimized precolumn reactions and chiral separations of amino acids were achieved within 2.5 min. Resolutions of diastereomers of OPA/TATG-amino acids were in the range of 2.5-6.1 at optimized separation conditions. Simultaneous separation of a mixture of five chiral amino acids was successfully performed in a single run in less than 100 s.  相似文献   

15.
Akbay C  Shamsi SA 《Electrophoresis》2004,25(4-5):635-644
The effect of hydrocarbon chain length on chemical selectivity in micellar electrokinetic chromatography (MEKC) was investigated using polymeric sulfated surfactants: poly-(sodium 7-octenyl sulfate), poly(sodium 8-nonenyl sulfate), poly(sodium 9-decenyl sulfate), and poly(sodium 10-undecenyl sulfate). Linear solvation energy relationships (LSERs) and free energy of transfer studies were conducted to predict the selectivity differences between the four polymeric surfactants. The overall nature of the solute/ polymeric micelle interactions was found to be different despite the fact that all polymeric surfactants have the same head group. The polar character and acidic strength of the polymeric surfactant are found to decrease as the hydrocarbon chain length of the surfactant is increased. On the other hand, the polarizability of the polymeric sulfated surfactants increases (upon interacting with solute lone-pair electrons) with increasing hydrocarbon chain length. The LSER results show that the solute size and hydrogen bond accepting ability play the key roles in MEKC retention.  相似文献   

16.
Poly(sodium undecenoyl-L-leucinate) (poly-L-SUL) was fractionated by the use of different molecular weight cutoff (MWCO) filters to narrow the polydispersity of the macromolecular sizes of the polymeric surfactant. The resulting polymeric surfactant fractions were characterized by the use of three techniques: (1) pulsed field gradient nuclear magnetic resonance (PFG-NMR) was used to determine the hydrodynamic radii, (2) analytical ultracentrifugation (AUC) was used to determine the molecular weights, and (3) steady-state fluorescence was used to determine the polarity of the nonfractionated and fractionated polymeric surfactants. From the data acquired from PFG-NMR, AUC, and fluorescence, it was noted that the hydrodynamic radii and molecular weight of the fractionated poly-L-SUL increased, while the polarity decreased with the increase in the size of the MWCO filter. However, a similarity in physical properties was observed between the nonfractionated and 10-30K fractionated poly-L-SUL except for the hydrodynamic radius and diffusion coefficients. The influence of different macromolecular sizes of poly-L-SUL on the chiral separation of phenylthiohydantion (PTH)-amino acids and coumarinic derivatives, as test analytes, was elucidated by the use of micellar electrokinetic chromatography (MEKC). The size of polymeric surfactants as a prerequisite for chiral separation was demonstrated by comparing the separation properties of fractionated versus nonfractionated polymeric surfactants. Fractionated poly-L-SUL resulted in enhanced resolution and separation efficiency of the test analytes as compared to the case of the nonfractionated poly-L-SUL. This observation indicates that minimizing polydispersity of polymeric surfactants may be important for some chiral separation applications.  相似文献   

17.
18.
Amino acid-derived surfactants have increasingly become a viable biofriendly alternative to petrochemically based amphiphiles as speciality surfactants. Herein, the Krafft temperatures and critical micelle concentrations (cmc) of three series of novel amino acid-derived surfactants have been determined by differential scanning microcalorimetry and surface tension measurements, respectively. The compounds comprise cationic molecules based on serine and tyrosine headgroups and anionic ones based on 4-hydroxyproline headgroups, with varying chain lengths. A linear dependence of the logarithm of cmc on chain length is found for all series, and in comparison to conventional ionic surfactants of equal chain length, the new amphiphiles present lower cmc and lower surface tension at the cmc. These observations highlight their enhanced interfacial performance. For the 18-carbon serine-derived surfactant the effects of counterion change and of the presence of a cis-double bond in the alkyl chain have also been investigated. The overall results are discussed in terms of headgroup and alkyl chain effects on micellization, in the light of available data for conventional surfactants and other types of amino acid-based amphiphiles reported in the literature.  相似文献   

19.
Mixed mode (MM) separation using a combination of MEKC and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a MM separation provides several advantages for overcoming the limitations of these well‐established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of eight very similar aryl ketones when the molecular micelle (sodium poly(N‐undecanoyl‐L ‐glycinate)) concentration was varied from 0.25 to 1.00% w/v and the bilayer number varied from 2 to 4. However, when MM separation was introduced, baseline resolution was achieved for all eight analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether, and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N‐undecanoyl‐L ‐leucylvalinate), was employed at concentrations of 0.25–1.50% w/v for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, MM separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this MM approach.  相似文献   

20.
The interaction between cationic surfactants (hexadecyl and dodecyl trimethyl ammonium bromide) and gelatin was characterized by measuring the circular dichroism. The interaction between the cationic surfactants and gelatin is weak in comparison to that of anionic surfactants. When the concentration of cationic surfactants is sufficiently low, refolding of the gelatin-strands to the triple helical structure by rechilling the solution from 298 K to 283 K is complete. The triple helical content of the solution is affected more strongly by the cationic surfactants in acidic solution than at pHs 7 or 10. The interaction depends on the apolar group of the surfactant and is found to be stronger for DTAB than for CTAB at 298 K. Coagulation of the hydrophobic gelatin-cationic surfactant complexes does not comprise that pan of gelatin which is able to refold the triple helical structure. Therefore, the gelatin-strands of lower molecular weights are thought to react favorably with the surfactant ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号