首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) does not work efficiently on small molecules (usually with molecular weight below 500 Da) because of the interference of matrix-related peaks in low m/z region. The previous methods developed for this problem focused on reducing the peaks caused by the traditional matrices. Here, we report a novel strategy to analyze small molecules in a high and interference-free mass range by using metal-phthalocyanines (MPcs) as matrices which should be capable of forming matrix-analyte adducts. The mass of the target analyte was calculated by subtracting the mass of MPc from the mass of the MPc-analyte adduct. MPcs were also detectable and could serve as internal standards. Various MPcs with aromatic or aliphatic groups and different metal centers were then synthesized and explored. Aluminum-phthalocyanines (AlPcs), gallium-phthalocyanines (GaPcs), and indium-phthalocyanines (InPcs) were efficient matrices to form MPc-analyte adducts in either the positive or negative ion mode. The detection limits varied from 17 to 75 fmol, depending on analyte types. The mechanism of adducts formation was also proposed. Collectively, our strategy provides a novel and efficient way to analyze small molecules by MALDI-TOF MS.  相似文献   

2.
Liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) is applied increasingly to various fields of small molecule analysis. The moderate resolving power (RP) of standard TOFMS instruments poses a risk of false negative results when complex biological matrices are to be analyzed. In this study, the performance of a high resolving power TOFMS instrument (maXis by Bruker Daltonik, Bremen, Germany) was evaluated for drug analysis. By flow injection analysis of critical drug mixtures, including a total of 17 compounds with nominal masses of 212–415 Da and with mass differences of 8.8–23.5 mDa, RP varied from 34,400 to 51,900 (FWHM). The effect of acquisition rate on RP, mass accuracy, and isotopic pattern fit was studied by applying 1, 2, 5, 10, and 20 Hz acquisition rates in a 16 min gradient elution LC separation. All three variables were independent of the acquisition rate, with an average mass accuracy and isotopic pattern fit factor (mSigma) of 0.33 ppm and 5.9, respectively. The average relative standard deviation of RP was 1.8%, showing high repeatability. The performance was tested further with authentic urine extracts containing a co-eluting compound pair with a nominal mass of 296 Da and an 11.2 mDa mass difference. The authentic sample components were readily resolved and correctly identified by the automated data analysis. The average RP, mass accuracy, and isotopic pattern fit were 36,600, 0.9 ppm, and 7.3 mSigma, respectively.  相似文献   

3.
We have investigated six nanomaterials for their applicability as surfaces for the analyses of peptides and proteins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Gold nanoparticles (NPs) were useful nanomateriais for small analytes (e.g., glutathione); Pt nanosponges and Fe3O4 NPs were efficient nanomaterials for proteins, with an upper detectable mass limit of ca. 25 kDa. Nanomateriais have several advantages over organic matrices, including lower limits of detection for small analytes and lower batch-to-batch variations (fewer problems associated with “sweet spois”), when used in laser desorption/ionization mass spectrometry.  相似文献   

4.
The performances of several matrices were investigated for the accurate determination of the molecular mass distributions of pullulans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The ionic liquid matrix (ILM) 2,5-dihydroxybenzoic acid butylamine (DHBB) gave better and more reliable results than the crystalline matrices 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP). With the ILM it was possible to obtain spectra of pullulans up to more than 100 kDa, the highest molar mass reported thus far. Owing to the known advantages of liquid matrices providing better spot-to-spot reproducibility, an almost noise-free spectrum and constant baselines were obtained when working under optimized conditions. In particular, the extent of in-source fragmentation occurring with this group of fragile polymers was considerably and decisively reduced. Thus, a more reliable representation of the true oligomer and polymer distributions is experimentally attainable, especially for distributions with small polydispersity values. The maximum error in the measured distribution associated with fragmentation was estimated by model calculations describing the changes in the polymer distribution upon different probabilities of fragmentation events. These simulation results indicated that the data obtained by MALDI-TOFMS using the liquid DHBB matrix were of high reliability. In particular, the average value of the distributions, M(w), and the polydispersity were obtained with predicted uncertainties of between 3 and 15% depending on the width of the distribution and the mass of the polymers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The protocol and various matrices were examined for quantification of biomolecules in both the low ca. 1200 amu and mid mass 6000–12000 amu ranges using an internal standard. Comparative studies of different matrices of MALDI quantitative analysis showed that the best accuracy and standard curve linearity were obtained for two matrices: (a) 2,5-dihydroxybenzoic acid (DHB) combined with a comatrix of fucose and 5-methoxysalicylic acid (MSA) and (b) ferulic acid/fucose. In the low mass range, the quantitative limit was in the 30 fmol range and in the mid mass range the quantitative limit was in the 250 fmol range. Linear response was observed over 2–3 decades of analyte concentration. The relative error of the standard curve slope was 1.3–1.8% with correlation coefficients of 0.996–0.998.The main problem for quantitative measurement was suppression of the signal of the less concentrated component (analyte or internal standard) by the more concentrated component. The effect was identified with saturation of the matrix by the analyte. The threshold of matrix saturation was found to be in the range of 1/(3000–5000) analyte/matrix molar ratio. To avoid matrix saturation the (analyte+internal standard) to matrix molar ratio should be below this threshold. Thus the internal standard concentration should be as low as possible.DHB/MSA/fucose and ferulic acid/fucose matrices demonstrated good accuracy and linearity for standard curves even when the internal standard had chemical properties different from the analyte. However, use of an internal standard with different chemical properties requires highly stable instrumental parameters as well as constant (analyte+internal standard)/matrix molar ratio for all samples.  相似文献   

6.
Second generation ionic liquid matrices are developed, examined, and tested. They have shown a wide mass detection range (<1000 Da to >270,000 Da) for proteins and peptides with greater S/N ratios than solid matrices. These ionic liquid matrices also exhibit the ability to effectively ionize proteins of large mass without disrupting noncovalent interactions between monomers. Both the anionic and cationic moieties have been varied systematically to find an ionic liquid matrix with the best physical properties, analyte signal intensity, and widest mass detection range. It was determined that both the proton affinity and pKa of the cation have a large effect on the ionic liquid matrices’ ability to effectively ionize the analyte. The ionic liquid matrices can be used to detect polysaccharides with fewer degradation products than solid matrices. N,N-diisopropylethylammonium α-cyano-4-hydroxycinnamate and N-isopropyl-N-methyl-t-butylammonium α-cyano-4-hydroxycinnamate were the best matrices for proteins and peptides, while N,N-diisopropylethylammonium α-cyano-4-hydroxycinnamate and N,N-diisopropylethylammonium ferulate were the best matrices for carbohydrates.  相似文献   

7.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

8.
Ke Y  Kailasa SK  Wu HF  Chen ZY 《Talanta》2010,83(1):178-184
CdS quantum dots (∼5 nm) are used as multifunctional nanoprobes as an effective matrix for large proteins, peptides and as affinity probes for the enrichment of tryptic digest proteins (lysozyme, myoglobin and cytochrome c) in laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). The use of CdS quantum dots (CdS QDs) as the matrix allows acquisition of high resolution LDI mass spectra for large proteins (5000-80,000 Da). The enhancement of mass resolution is especially notable for large proteins such as BSA, HSA and transferrin (34-49 times) when compared with those obtained by using SA as the matrix. This technique demonstrates the potentiality of LDI-TOF-MS as an appropriate analytical tool for the analysis of high-molecular-weight biomolecules with high mass resolution. In addition, CdS QDs are also used as matrices for background-free detection of small biomolecules (peptides) and as affinity probes for the enrichment of tryptic digest proteins in LDI-TOF-MS.  相似文献   

9.
A sample preparation method that is suitable for sensitive detection of underivatized oligosaccharides by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) has been investigated. As compared with the conventional dried‐droplet or ethanol (EtOH) recrystallization method, superior mass spectra in terms of ion yield and signal‐to‐noise (s/n) ratio were obtained when methanol (MeOH) was used as a solvent for the mixture of matrix and oligosaccharides. Based on these results, a new sample preparation method, named the ‘reverse thin layer method’, was developed. This method comprises two steps: first, complete drying of the oligosaccharide solution on the MALDI target plate; and second, deposition of the matrix dissolved in a small amount of MeOH. Using this method, a relatively homogeneous matrix crystal was generated and higher yields of both positive and negative ions were obtained from oligosaccharides compared with conventional methods. Notably, the method can be applied to various matrices including both solid and liquid matrices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This work reports the use of a two-dimensional liquid chromatography (2D-LC) system for quantification of the enantiomers of omeprazole in distinct native aqueous matrices. An octyl restricted-access media bovine serum albumin column (RAM-BSA C8) was used in the first dimension, while a polysaccharide-based chiral column was used in the second dimension with either ultraviolet (UV-vis) or ion-trap tandem mass spectrometry (IT-MS/MS) detection. An in-line configuration was employed to assess the exclusion capacity of the RAM-BSA columns to humic substances. The excluded macromolecules had a molecular mass in the order of 18 kDa. Good selectivity, extraction efficiency, accuracy, and precision were achieved employing a very small amount (500 μL or 1.00 mL) of native water sample per injection, with detection limits of 5.00 μg L−1, using UV-vis, and 0.0250 μg L−1, using IT-MS/MS. The total analysis time was only 35 min, with no time spent on sample preparation. The methods were successfully applied to analyze a series of waste and estuarine water samples. The enantiomers were detected in an estuarine water sample collected from the Douro River estuary (Portugal) and in an influent sample from the wastewater treatment plant (WWTP) of São Carlos (Brazil). As far as we are concerned, this is the first report of the occurrence of (+)-omeprazole and (−)-omeprazole in native aqueous matrices.  相似文献   

11.
A rapid, sensitive, and widely applicable method for the simultaneous quantitative analysis of 20 underivatized amino acids in different biological matrices, including serum, plasma, and tissue homogenates, using ultra high performance liquid chromatography with tandem mass spectrometry was developed and validated. Only 4 µL of serum, plasma, or tissue homogenate was extracted with 996 µL of solution (1.7 mM ammonium formate in 85% acetonitrile containing 0.1% formic acid) containing 100 ng/mL phenylalanine‐d5 as an internal standard without any further derivatization step. In addition, the matrix effects were small because a large volume of extraction solution was used. The total run time including reequilibration was 13 min. The results of linearity, accuracy, repeatability, precision, limits of detection, limits of quantification, and sample stability were sufficient to allow the measurement of the amino acids in different biological matrices. We conclude that our method is rapid, sensitive, and widely applicable and represents an improvement over other currently available technologies.  相似文献   

12.
During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose‐dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high‐resolution mass spectrometry led to unequivocal identification of the interfering peak as an N‐desmethyl metabolite of the parent analyte. High‐resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the 13C‐isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We describe the use of aromatic ketones and cinnamyl ketones that have high vacuum stability for analyzing tissue sections using matrix‐assisted laser desorption/ionization imaging mass spectrometry. Specifically, the matrix, (E)‐4‐(2,5‐dihydroxyphenyl)but‐3‐en‐2‐one (2,5‐cDHA) provides high sensitivity and high vacuum stability while producing small size crystals (1‐2 μm). A high throughput and highly reproducible sample preparation method was developed for these matrices that first involves using an organic spray solution for small matrix crystal seeding followed by spraying of the matrix in a 30% acetonitrile/70% water solution on the tissue surface to obtain a homogeneous coating of small crystals, suitable for high spatial resolution imaging.  相似文献   

14.
A continuing effort in mass spectrometry is to optimize desorption/ionization processes in order to enhance analyte ion yields and reduce fragmentation. The effect of small carbohydrate and amino acid matrices on the yield of secondary ions from vitamin B12 (cyanocobalamin) was examined using plasma desorption mass spectrometry. The extent of the corrin decomposition is dependent upon the matrix-to-analyte ratio. The enhanced yields of the high-mass fragment ion [M–CN + H]+ and the ions corresponding to protonated molecules, however, are dependent upon both the matrix-to-analyte ratio and the nature of the matrix. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Here, N,N′-bis(4-hydroxylsalicylidene)-p-phenylenediamine (BSPD-OH), N,N′-bis(4-methoxylsalicylidene)-p-phenylenediamine (BSPD-OMe) and N,N′-bis(salicylidene)-p-phenylenediamine (BSPD), which belong to the same category of aggregation-induced emission (AIE) compounds based on Schiff base reactions, were synthesized and applied as new matrices in the analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This type of AIE compounds can be good MALDI matrices. Conventional organic matrices often produce large amounts of matrix ions, hindering the analysis of low molecular weight (LMW) compounds. However, these AIE compounds generate few matrix ions and less background interference because their presence as aggregates decreases the generation of matrix interference. The sensitivity of the AIE matrix is high because the aggregates can improve the absorption of the applied laser emissions. We can regulate the ionization efficiency of the AIE matrix by changing its aggregation state. During this study, BSPD-OH exhibited better ionization efficiency than the other two AIE matrices because it has more phenolic hydroxyl groups. BSPD-OH was successfully applied to the analysis of various LMW compounds including amino acids, organic amine compounds, isoquinoline compounds and fluoroquinolones compounds. This material also can be employed during the qualitative and quantitative analysis of LMW metabolites in human urine without requiring complicated separation processes.  相似文献   

16.
Seventeen fungicides were determined in different matrices from vineyard areas, including vine leaves, soils, grapes and water, using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For leaf analysis, ultrasound-assisted extraction (UAE) was performed evaluating different solvents. UAE was compared with other extraction techniques such as vortex extraction (VE) and matrix solid-phase dispersion (MSPD). The performance of the UAE method was demonstrated on vine leaf samples and on other types of samples such as tea leaves, underlining its general suitability for leaf crops. As regards other matrices, soils were analyzed by UAE and microwave-assisted extraction (MAE), grapes by UAE and waters by SPE using cork as the sorbent. The proposed method was applied to 17 grape leaf samples in which 14 of the target fungicides were detected at concentrations up to 1000 μg g−1. Furthermore, the diffusion and transport of fungicides was demonstrated not only in crops but also in environmental matrices.  相似文献   

17.
New data on sample preparation and matrix selection for the fast screening of androgenic anabolic steroids (AAS) by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) is presented. The rapid screening of 15 steroids included in the World Anti‐Doping Agency (WADA) prohibited list using MALDI was evaluated. Nine organic and two inorganic matrices were assessed in order to determine the best matrix for steroid identification in terms of ionisation yield and interference by characteristic matrix ions. The best results were achieved for the organic matrices 2‐(4‐hydroxyphenylazo)benzoic acid (HABA) and trans‐3‐indoleacrylic acid (IAA). Good signals for all the steroids studied were obtained for concentrations as low as 0.010 and 0.050 µg/mL on the MALDI sample plate for the HABA and IAA matrices, respectively. For these two matrices, the sensitivity achieved by MALDI is comparable with the sensitivity achieved by gas chromatography/mass spectrometry (GC/MS), which is the conventional technique used for AAS detection. Furthermore, the accuracy and precision obtained with MALDI are very good, since an internal mass calibration is performed with the matrix ions. For the inorganic matrices, laser fluences higher than those used with organic matrices are required to obtain good MALDI signals. When inorganic matrices were used in combination with glycerol as a dispersing agent, an important reduction of the background noise was observed. Urine samples spiked with the study compounds were processed by solid‐phase extraction (SPE) and the screening was consistently positive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Calibration of two commercially available glow discharge double focusing mass spectrometers, the VG 9000 and Element GD, is described using synthetic pin standards pressed from solution doped copper and zinc matrices. A special pressing die was developed for this purpose and optimal results were obtained with the highest possible pressures, i.e., 95 kN·cm? 2. This calibration approach permits the determination of trace element mass fractions down to μg·kg? 1 with small uncertainties and additionally provides traceability of the GD-MS results in the most direct manner to the SI (International System of Units). Results were validated by concurrent measurements of a number of compact copper and zinc certified reference materials. The impact of the sample pin cross-section (circular or square) was investigated with the use of a new pin-sample holder system for the Element GD. The pin-sample holder was designed by the manufacturer for pin-samples having circular cross-section; however, samples with square pin cross-section were also shown to provide acceptable results. Relative Sensitivity Factors for some 50 analytes in copper (VG 9000, Element GD) and zinc matrices (VG 9000) are presented. The field of applicability of GD-MS may be considerably extended via analysis of pin geometry samples based on their ease of preparation, especially with respect to the accuracy and traceability of the results and the enhanced number of analytes which can be reliably calibrated using such samples.  相似文献   

19.
Application of matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) to small-molecule detection is often limited, because of high matrix background signals in the low-mass region. We report here an approach in which a mixture of two conventional MALDI matrices with different proton affinity was used to suppress the formation of matrix clusters and fragments. Specifically, when acidic α-cyano-4-hydroxycinnamic acid (CHCA) and basic 9-aminoacridine (9-AA) were used as the binary matrix, fewer background matrix peaks were observed in both positive and negative-mode detection of small molecules. In addition, the presence of CHCA substantially reduced the laser fluence needed for analyte desorption and ionization; thus better signal-to-background ratios were observed for negatively charged inositol phosphates in complex plant extracts. The mixing of MALDI matrices of different protonaffinities leads to suppression of matrix clusterformation and subsequently yields cleaner MS spectraof fewer background peaks in both positive andnegative detection of small molecules  相似文献   

20.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号