首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
改性壳聚糖树脂对利尿剂的吸附性能   总被引:5,自引:0,他引:5  
用琥珀酸酐、苯甲酸酐、聚乙烯亚胺和 3 氯 2 羟丙基三甲基氯化铵对壳聚糖进行改性 ,分别在其氨基上引入羧基、苯环、多氨基和季胺基 ,并利用红外谱图对于改性后的壳聚糖的结构进行了分析 .应用相转移法制备了 4种改性壳聚糖的微球 ,实验研究了这 4种微球对 9种不同利尿剂的吸附性能 .结果表明 ,由于Lewis酸碱相互作用 ,引入羧基后的壳聚糖树脂对 3种碱性利尿剂的吸附量有了 15 %~ 36 %的提高 ,而引入多氨基的壳聚糖树脂对四种酸性利尿剂的吸附量分别提高了 4 8 5 %~ 2 0 9% ;由于苯环和利尿剂的憎水性基团的相互作用 ,引入苯环后的壳聚糖树脂对所有的利尿剂的吸附量都有所提高 ,其幅度为 15 %~ 6 1% ;因为季胺基团和羧基之间发生的离子交换作用 ,引入季胺基后的树脂对具有羧基的利尿剂吸附量有显著的提高 ,尤其对布美它尼的吸附量提高了 2倍以上 .  相似文献   

2.
In this study, the biopolymer chitosan/vermiculite (VMT) nanocomposites were prepared by the solution mixing process of the cationic biopolymer chitosan with three different modified VMT (HVMT, NVMT, and OVMT), which was treated by hydrochloride, sodium, and cetyl trimethyl ammonium bromide (CTAB), respectively. Wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) have been employed in the characterization of chitosan/HVMT, chitosan/NVMT, and chitosan/OVMT nanocomposites. Both WAXD data and TEM images of chitosan nanocomposites indicated that the silicate layers were disorderedly dispersed into the chitosan matrix in nano scale. The thermal stability of chitosan/HVMT nanocomposites have the greatest improvements compared to that of neat chitosan, chitosan/NVMT and chitosan/OVMT nanocomposites. It provides a potential approach to prepare high performance and low-cost chitosan nanocomposite.  相似文献   

3.
Lactose‐ and heparin‐modified chitosan films were prepared and their physical and biological properties were compared with chitosan, chitosan‐g‐heparin, and chitosan‐g‐lactose films. Atomic force microscopy (AFM) measurement showed that all these films in the dry state were rather flat with a roughness smaller than 20 nm. While the chitosan‐g‐lactose/heparin and chitosan‐g‐lactose films have the highest swelling and weight loss ratios, the chitosan and chitosan‐g‐heparin films have the lowest. The chitosan‐g‐lactose/heparin film showed stronger ability to induce chondrocyte attachment, proliferation, viability, and glycosaminoglycan (GAG) secretion than that of the chitosan, chitosan‐g‐heparin, and chitosan‐g‐lactose films. Chondrocyte aggregates and nodules were observed on the chitosan‐g‐lactose/heparin and chitosan‐g‐lactose films, which still preserved viable metabolic ability. These results show that the lactose‐modified and heparin‐incorporated chitosan film can enhance the cell–biomaterial interaction synchronously. The resulting chitosan‐g‐lactose/heparin material is more bioactive that might be applicable as promising scaffold for chondrogenesis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Li Ma  Kerang Li  Limin Li  Pu Liu 《中国化学》2012,30(2):413-417
A simple and efficient method for the preparation of a novel soluble chitosan derivative, diethoxy phosphoryl chitosan (PH‐chitosan), has been developed. Ph‐chitosan was characterized by elemental analysis, FT‐IR, NMR, ICP, XRD, TG and SEM, respectively. The chemical identity of PH‐chitosan was determined by FT‐IR and confirmed by NMR, and those results unequivocally demonstrated that diethoxy phosphoryl groups were grafted onto the amino and hydroxyl groups of chitosan. The results of XRD indicated that the crystalline structure of chitosan was destroyed due to the incorporation of diethoxy phosphoryl group resulting in loss of hydrogen bond. The analysis of TG demonstrated that PH‐chitosan was less thermal stable than chitosan. This simple synthetic method provided a new and available approach to prepare a soluble high molecule weight chitosan derivative.  相似文献   

5.
Chitosan film was immersed in NaOH solution with xylan to simply prepare active chitosan/xylan film. FT-IR, XRD, FE-SEM, AFM and XPS were used to evaluate the effects of xylan on the structure and morphology of chitosan film, and a wide variety of material characteristics of the chitosan/xylan composite films were investigated. The results showed that the xylan chains entered into the gap of chitosan film and became nodules, leading to strong hydrogen bonds and electrostatic interactions between chitosan and xylan. Moreover, the introduction of xylan not only resulted in stronger crystallinity and a more compact structure of chitosan film, but also had an important effect on the properties of chitosan film. The tensile strength, breaking elongation and anti-ultraviolet performance of the chitosan/xylan films were improved greatly with the increasing concentration of xylan; the water vapor transmission rate, water absorption rate and oxygen barrier property of chitosan/xylan composite films were higher than those of chitosan film; chitosan/xylan composite films still showed hydrophobicity when the xylan concentration was more than 1 %. The chitosan/xylan composite film has more potential to be used as food packaging than pure chitosan film.  相似文献   

6.
We have studied the crystal transition behaviors from hydrated chitosan to anhydrous chitosan by X‐ray diffraction analyses. Hydrated chitosan prepared by deacetylation of crustacean α‐chitin was subjected to the two conversion methods, hydrothermal treatment and high‐humidity treatment via chitosan/monocarboxylic acid complex. The transition by hydrothermal treatment progressed with increasing treatment temperature and time, and the rapid transition occurred above 200 °C. Chitosan/acetic acid complex and chitosan/formic acid complex were prepared by immersing hydrated chitosan in acid solution. The transition from chitosan/acetic acid complex to anhydrous chitosan in high relative humidity condition proceeded with increasing temperature and was complete at 80 °C for 1 h, whereas chitosan/formic acid complex did not convert to anhydrous chitosan under the same conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1065–1069  相似文献   

7.
LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES*   总被引:1,自引:0,他引:1  
Five chitosan derivatives, i.e. O-butyryl chitosan, O-benzoyl chitosan, N-phthaloyl chitosan, N-maleoyl chitosan and O-cyanoethyl chitosan, were prepared from chitosan. All of them had better solubilitythan chitosan, and demonstrated lyotropic liquid crystalline behavior in various solvents. The critical liquidcrystalline behavior of three O-substituted chitosan derivatives was evidently different from two N-substituted analogues. Typical fingerprint textures of cholesteric phase were only observed in three O-substituted derivatives. The critical concentration (v/v%) of three O-substituted derivatives does not dependon the acidity of acidic solvents.  相似文献   

8.
Magnetite nanoparticles have been successfully synthesized in the presence of chitosan using an in situ coprecipitation method in alkali media. This method allows obtaining chitosan ferrogels due to the simultaneous gelation of chitosan. The chitosan concentration has been varied and its effects on the particle synthesis investigated. It has been demonstrated that high chitosan concentrations prevents the formation of magnetite due to the slow diffusion of the alkali species through the viscous medium provided by chitosan, instead iron hydroxides are formed. The presence of magnetite nanoparticles increases the elastic modulus which results in a reinforcement of the chitosan ferrogels. This effect is counterbalanced by the disruption of hydrogen bonding responsible for the formation of chitosan hydrogels in alkali media.  相似文献   

9.
通过壳聚糖氧化裂解,制备了分子量为8000的水溶性壳聚糖,并通过烷基化反应合成了二乙氨乙基壳聚糖、二甲氨基(1-甲基)乙基壳聚糖及二乙基甲基铵乙基壳聚糖.在体外测定了水溶性壳聚糖及其衍生物对胆酸盐(牛磺胆酸钠和甘氨胆酸钠)的结合能力及其影响因素.结果表明,水溶性壳聚糖结合胆酸盐的能力主要取决于其阳离子化程度.修饰后的壳聚糖结合胆酸盐的能力增强,说明引入更多的胺基或铵基有利于对胆酸盐的结合.  相似文献   

10.
Novel stimuli-responsive multilayer chitosan hollow microspheres with chitosan as the unique component have been fabricated by the sequential layer-by-layer electrostatic assembly technique from the sacrificial templates (polystyrene sulfonate, PSS) with chitosan (CS) as the polycation and carboxymethyl chitosan (CMCS) as the polyanion, respectively. Their hollow structure was confirmed by the TEM analysis. The DLS analysis indicated that the multilayer chitosan microcapsules were pH and ionic strength dual-responsive. Due to the biocompatibility of the single component chitosan used, the multilayer chitosan microcapsules are expected to be used in the controlled release of drugs.  相似文献   

11.
Chitosan nanoparticles were prepared from chitosan with various molecular weights by tripolyphosphate (TPP) ionic gelation combined with a spray drying method. The morphologies and characteristics of chitosan nanoparticles were determined by TEM, FE-SEM and from their mean sizes and zeta potentials. The effect of chitosan molecular weight (130, 276, 760 and 1200 cPs) and size of spray dryer nozzle (4.0, 5.5 and 7.0 µm) on mean size, size distribution and zeta potential values of chitosan nanoparticles was investigated. The results showed that the mean size of chitosan nanoparticles was in the range of 166–1230 nm and the zeta potential value ranged from 34.9 to 59 mV, depending on the molecular weight of chitosan and size of the spray dryer nozzles. The lower the molecular weight of chitosan, the smaller the size of the chitosan nanoparticles and the higher the zeta potential. A test for the antibacterial activity of chitosan nanoparticles (only) and a chitosan nanoparticle–amoxicillin complex against Streptococcus pneumoniae was also conducted. The results indicated that a smaller chitosan nanoparticle and higher zeta potential showed higher antibacterial activity. The chitosan nanoparticle–amoxicillin complex resulted in improved antibacterial activity as compared to amoxicillin and chitosan nanopaticles alone. Using a chitosan nanoparticle–amoxicillin complex could reduce by three times the dosage of amoxicillin while still completely inhibiting S. pneumoniae.  相似文献   

12.
This study focused on the structural, optical and electrical features of chitosan organic layer obtained by spin coating technique both on glass and n-Si substrates. XRD results indicated that chitosan has polycrystalline orthorhombic nature. While optical transmittance spectrum of the chitosan organic layer exhibited an increasing tendency in the visible range, band gap energy value was calculated as 4.23 eV for chitosan by UV–Vis spectrometer. Electrical performance of organic chitosan layer in a Schottky device was studied by fabricating of Au/n-Si and Au/chitosan/n-Si devices. The suitability of Au/chitosan/n-Si sandwich devices in optoelectronic applications were tested under dark and illumination conditions. The Au/chitosan/n-Si sandwich device exhibits good photodiode characteristics. Furthermore, the effect of X-ray radiation doses on the electrical properties of the Au/chitosan/n-Si sandwich device was also investigated. In order to get information about electrical characteristics as a function of X-ray radiation doses, Au/chitosan/n-Si sandwich device was exposed to X-ray radiation in same exposure time and various doses. The results highlighted that the performance of the device with chitosan organic interface layer deteriorated with increasing radiation dose. In addition, the transportation mechanism of chitosan based Schottky device was discussed in details.  相似文献   

13.
Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin.  相似文献   

14.
Critical‐sized bone defects are incapable of self‐healing and are commonly seen in clinical practice. The authors explore a new treatment for this, decellularized periosteum is applied to chitosan globules (chitosan‐DP globules) as a hybrid material. The efficacy of chitosan‐DP globules on rabbit femoral condyle bone defects is assessed with biocompatibility, biomechanics, and osteogenic efficiency measurements, and compared with the results of chitosan globules and empty control. No difference in cytotoxicity is observed among chitosan‐DP globules, chitosan globules, and the empty control. Chitosan‐DP globules possesse a better surface for cell adhesion than did chitosan globules. Chitosan‐DP globules demonstrate superior efficiency for osteogenesis in the defect area compared to chitosan globules as per microcomputed tomography examination and push‐out testing, with relatively minor histological differences. Both chitosan globule groups show more satisfactory results than those for the empty control. The results implicate chitosan‐DP globules as a promising solution for bone defects.  相似文献   

15.
Summary: Zeolite-chitosan composites have been prepared by encapsulation of zeolites by a gelling solution of chitosan or by in-situ synthesis of zeolites inside a chitosan gel. The preparation of the composite implies modifications of both components. Zeolites are dealuminated by the acid solution in which chitosan is dissolved and the morphology of the chitosan fibrils is stabilized by iniorganic species issued from the dealumination of the zeolites or from their synthesis medium. Zeolite-bearing chitosan xerogels present surface area and porosity similar to the textural properties of chitosan aerogels.  相似文献   

16.
彭静 《高分子科学》2004,(5):439-444
INTRODUCTIONChitosan, poly-β-(1 -?4)-D-glucosamine, can be obtained from chitin by deacetylation with alkali. It is soluble indilute acidic medium due to the presence of amino groups. The use of chitosan in many areas, such as foodprocessing, biochemistry, Pharmaceuticals, medicine, and agriculture has been developed over the pastdecades[1,2].In recent years, it has been reported that many properties of chitosan depend on the molecular weight[3]. Thechitosan oligomers possess better fun…  相似文献   

17.
新型胺基壳聚糖树脂的合成及其对胆红素吸附性能的研究   总被引:8,自引:0,他引:8  
以壳聚糖为原料,经羟丙基氯化、胺基化,制备了一种新型胺基壳聚糖树脂,研究了该树脂对胆红素的吸附性能。结果表明:胺基壳聚糖树脂的胺基含量比壳聚糖高,该树脂对游离胆红素的吸附在3h基本达到平衡,吸附量随着胺基含量增加而增加,树脂的吸附性能受温度、离子强度影响。胺基壳聚糖树脂对血清白蛋白结合胆红素的吸附量大于壳聚糖,但低于对游离胆红素的吸附。  相似文献   

18.
Fully acylated chitosan and N,N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and IH NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N,N-diacyl chitosan to verify the crystallinity change caused by the acylation.  相似文献   

19.
甲壳胺的结晶度和结晶形态   总被引:6,自引:0,他引:6  
首次制得非晶甲壳胺样品,并给出了根据X射线衍射图精确计算甲壳胺结晶度的公式,计算得知甲壳胺的结晶度随脱酰度的增加(74%~85%)而增加,发现甲壳胺的结晶结构和结晶形态与制样条件有关。  相似文献   

20.
本文通过邻苯二甲酸酐保护壳聚糖的2-NH2,在壳聚糖的6-OH上引入聚乙二醇单甲醚。再经脱保护基团、2-NH2挂接叶酸,合成了叶酸接枝的聚乙二醇化壳聚糖。目标物用FT-IR,1HNMR,UV-Vis进行了表征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号