首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on recent progress on external cavity diode lasers (ECDL) using a new concept of a Littman/Metcalf configuration. Within this concept one facet of the diode laser chip is used for coupling to a high quality Littman/Metcalf resonator whereas the other side of the diode laser chip emits the output beam. The alignment of the external resonator is independent from the alignment of the output beam and there is no need for any compromise in the alignment. This results in an improved behavior of the external resonator with the benefit of a drastic increase in power and single mode tuning.We investigated this light source for high resolution spectroscopy in the field of cw-cavity ring-down spectroscopy (CRDS). The monitoring of environmental and medical gases from vehicles or human breath requires a suitable radiation source in the mid-infrared (MIR) between 3 and 5 μm that is frequency stable and can be widely tuned. Since this wavelength cannot be reached via direct emitting room temperature semiconductor lasers, additional techniques like difference frequency generation (DFG) are essential. Tunable difference frequency generation relies on high power, small linewidth, fast tunable, robust laser diode sources with excellent beam quality.With our new compact, alignment-insensitive and robust ECDL concept, we achieved an output power of 1000 mW and an almost Gaussian shaped beam quality (M2<1.2). The coupling efficiency for optical waveguides as well as single mode fibers exceeds 70%. The wavelength is widely tunable within the tuning range of 20 nm via remote control. This laser system operates longitudinally in single mode with a mode-hop free tuning range of more than 150 GHz without current compensation and a side-mode-suppression better than 50 dB. This concept is currently realized within the wavelength regime between 750 and 1080 nm.Our high powered Littman/Metcalf laser system was part of a MIR-light source which utilizes DFG in periodically poled lithium niobate (PPLN) crystals. At the wavelength of 3.3 μm we were able to achieve a high-resolution absorption spectrum of water with four different isotoplogues of H2O components. This application clearly demonstrates the suitability of this laser for high-precision measurements. PACS 07.57.Ty; 42.55.Px; 42.62.Fi  相似文献   

2.
研究了镀减反膜GaAs半导体激光器在Littrow 式外腔结构中的输出特性.采用电流补偿技术,得到了约30 GHz的连续无跳模调谐范围.利用外差拍探测技术获得激光器输出线宽约为120 kHz.还研究了激光器的强度噪声分别随着电流与波长变化的特点并对此进行了分析.该类激光器可以广泛应用在冷原子物理、激光光谱以及量子光学等许多领域. 关键词: 减反膜 半导体激光器 线宽 强度噪声  相似文献   

3.
A widely tunable (5-12.5 μm) continuous-wave (cw) mid-infrared (mid-IR) laser spectrometer based on difference frequency generation (DFG) by mixing an external-cavity diode laser (ECDL) with a Ti:Sapphire laser in an AgGaS2 crystal is described. The wide tunability was achieved by tuning laser wavelength associated with crystal angle tuning under type II phase matching condition. A maximum output power of about 66 nW was obtained at 8.06 μm. High resolution spectrum of methane (CH4) over more than 10 cm−1 near 7.7 μm has been recorded to evaluate the performance of the developed DFG-based mid-IR laser spectrometer.  相似文献   

4.
We report preliminary results on the first application of optical feedback cavity-enhanced absorption spectroscopy with a blue (411 nm) extended cavity diode laser (ECDL) for NO2 detection. While this technique was originally developed to operate with distributed feedback diode lasers in the near infrared, it is here extended to ECDLs and applied to the blue spectral region. With a simple and compact optical setup, we demonstrate from the baseline noise a minimum detectable NO2 concentration of 6×109 molecules/cm3 for a single laser scan (70 ms), which extrapolated under atmospheric conditions corresponds to 200 pptv. Signal averaging should allow further lowering of this limit. Observed absorption spectra display more structure than previous spectra obtained at lower resolution by Fourier-transform spectroscopy at the same wavelength. PACS 07.88.+y; 42.55.Px; 42.62.Fi  相似文献   

5.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

6.
What is to the authors' knowledge the first experimental demonstration of a nonresonant cw Raman laser pumped by a tunable external-cavity diode laser (ECDL) is presented. The ECDL is phase-frequency locked to a high-finesse Raman laser cavity containing diatomic hydrogen (H(2)) by the Pound-Drever-Hall locking technique. The Stokes lasing threshold occurs at a pump power of 400 +/- 30 muW, and a maximum photon conversion efficiency of 12.0 +/- 1.3% is achieved at 1.6 mW of pump power. A 40-nm tuning range of the cw Stokes emission, 1174-1214 nm, is obtained by tuning of the wavelength of the ECDL pump source.  相似文献   

7.
Abstract: Conventional Raman techniques require a continuous-wave laser with stabilized wavelength, narrow line width, and sufficient output power. Due to their miniature size and low cost, diode lasers are good choice as light sources for Raman spectroscopy, especially when compact and portable instruments are needed. However, a solitary multimode diode laser has certain drawbacks that limit its use for Raman application. To circumvent these drawbacks, an external cavity can be coupled to the active gain medium of the diode to enhance the laser performance. A grating-based external cavity allows the laser to operate in a single longitudinal mode with greatly reduced line width and stabilized wavelength. This article examines the fundamentals of semiconductor lasers to show the necessity of operating diode lasers in an external cavity for Raman applications. Two feedback grating-based external cavity diode laser (ECDL) designs, viz. Littrow and Littman-Metcalf configurations, are explained. Historic and recent progress in the development of ECDL devices is reported. An updated summary of ECDL-equipped Raman systems applied to fields such as in vivo biomedical studies and in situ process/quality control is provided. Topics on mode-hop-free continuous scanning, wavelength stabilization, and dealing with ambient conditions are discussed.  相似文献   

8.
We demonstrate an 852-nm external cavity diode laser(ECDL) system whose wavelength is mainly determined by an interference filter instead of other wavelength selective elements. The Lorentzian linewidth measured by the heterodyne beating between two identical lasers is 28.3 k Hz. Moreover, we test the application of the ECDL in the Faraday atomic filter.Besides saturated absorption spectrum, the transmission spectrum of the Faraday atomic filter at 852 nm is measured by using the ECDL. This interference filter ECDL method can also be extended to other wavelengths and widen the application range of diode laser.  相似文献   

9.
High-sensitive multi-species detection around 1550 nm using a modulated grating Y-branch, MG-Y, diode laser tunable between 1529 nm and 1565 nm is presented. The MG-Y diode laser is based on the Vernier effect of two modulated gratings, and exhibits quasi-continuous tuning over 36 nm. Multi-species detection is achieved by fast sequential scanning of single absorption lines of CH4, CO, C2H2, and CO2 distributed over the tuning range of the diode laser. The laser wavelength is scanned about 10 GHz around each absorption line for 5 ms and this is followed by a discrete large jump in operating wavelength to the next line.  相似文献   

10.
刘景旺  杜振辉  李金义  齐汝宾  徐可欣 《物理学报》2011,60(7):74213-074213
从DFB型激光二极管调谐机理出发,提出了电流-温度调谐特性的解析模型,通过实验测量结果辨识出模型参数,将模型应用于四个不同厂家的DFB型二极管激光器,得到激光器电流-温度调谐的解析模型;将模型预测值与实验测量值比较,相关系数均在0.9999以上.同时,利用CO2气体的多个吸收谱线测量激光的波长,验证了解析模型的预测波长值,与HITRAN谱库中CO2气体吸收波长的误差在3 pm内.解析模型能够精确预测激光器在快速调谐过程中的瞬态输出波长,其精度能够满足光谱分析、光 关键词: DFB激光二极管 调谐机理 解析模型 电流调谐和温度调谐  相似文献   

11.
《Infrared physics》1986,26(2):97-99
Lead-salt tunable diode lasers were applied to measure IR attenuation in As2Se3 chalcogenide glass fibres. The attenuation constant at 10.5 μm is determined from the slope of the IR transmission through a fibre as a function of its length, and the spectral dependence over the 10–13 μm wavelength region is obtained by tuning the laser IR source.  相似文献   

12.
We report stable narrow linewidth laser systems based on self-developed Littman configuration external cavity diode lasers (ECDLs). The frequency of the ECDL is stabilized to a high fineness ultralow-expansion glass reference cavity with the Pound-Drever-Hall technique. By heterodyne beating of two identical systems, we conclude that the linewidth 4.3× 10^-14 at an averaging measurement time. of each ECDL is reduced to lower than 150 Hz and its frequency stability reaches time of 1 s, the averaged long-term frequency drift is less than 0.2 Hz/s over 30 h  相似文献   

13.
We have successfully observed high-resolution spectra of spin-forbidden electric quadrupole transition (1 S 03 D 2) in ytterbium (174Yb) atoms. The differential light shifts between the 1 S 0 and the 3 D 2 states in a far-off resonant trap at 532 nm are also measured. For the spectroscopy, we developed simple, narrow-linewidth, and long-term frequency stabilized violet diode laser systems. Long-term drifts of the excitation laser (404 nm) is suppressed by locking the laser to a length stabilized optical cavity. The optical path length of the cavity is stabilized to another diode laser whose frequency is locked to a strong 1 S 01 P 1 transition (399 nm) of Yb. Both lasers are standard extended-cavity diode lasers (ECDLs) in the Littrow configuration. Since the linewidth of a violet ECDL (~10 MHz) is broader than a typical value of a red or near infra-red ECDL (<1 MHz), we employ optical feedback from a narrow-band Fabry–Perot cavity to reduce the linewidth. The linewidth is expected to be <20 kHz for 1 ms averaging time, and the long-term frequency stability is estimated to be ~200 kHz/h.  相似文献   

14.
2 and two diode lasers as pump sources and experiments with this setup are presented. In contrast to the majority of known applications of the difference frequency mixing with solid state or gas lasers, we apply two single mode diode lasers with emission wavelengths of 690 nm and 805 nm, respectively. By fixing the emission wavelength of one diode laser and tuning the wavelength of the second laser, by changing temperature or excitation current, we can cover typically 0.87 cm-1 (FWHM) in good agreement with recently published data and theory. With an input power of 20 mW and 6 mW we achieved an output power in the nW-range. To demonstrate the capabilities of the spectrometer we scanned CO and OCS absorption lines near 2107 cm-1. From these experiments we deduce an overall signal-to-noise ratio of 1000:1 and a spectral resolution better than 30 MHz. With such parameters a trace gas detection of CO at sub-ppm level will be possible. Received: 19 August 1996/Revised version: 5 November 1996  相似文献   

15.
A computer-controlled diode laser spectrometer for the 1200 to 2500 cm–1 spectral region is described. The spectrometer has been applied to high resolution spectroscopy of the NCO radical at 5.2 m. The lead-salt diode lasers are cooled to their operating temperature with a temperature adjustable helium evaporation cryostat. Computer-controlled tuning procedures for the frequency tuning of the diode lasers have been developed; they are independent of tables describing the tuning characteristics of the diode lasers. 41 lines of the antisymmetric stretching-vibrationv 3 of the linear NCO radical have been observed. We were able to detect vibration-rotation transitions in both2 1/2 and2 3/2 fine structure sublevels. These measurements led to the precise determination of additional molecular constants.  相似文献   

16.
张继涛  吴学健  李岩  尉昊赟 《物理学报》2012,61(10):100601-100601
提出一种利用光频梳和可调谐半导体激光器提高台阶高度测量准确度的方法. 通过将可调谐激光器锁定至光频梳,可对激光器的输出波长进行精确锁定与测量.基于可调合成波长链原理,利用锁定后的半导体激光器构建了一套台阶高度测量方案,该方案可消除合成波长误差对台阶高度测量不确定度的影响. 采用一台可调谐半导体激光器和光频梳进行了5000 s的连续锁定实验, 结果表明,锁定后的可调谐半导体激光器的频率稳定度达 1.8×10-12.该方法的理论测量不确定度约为7.9 nm, 且测量结果可溯源至时间频率基准.  相似文献   

17.
Diode laser spectroscopy of overtone bands of acetylene   总被引:1,自引:0,他引:1  
Overtone absorption lines of acetylene in the regions around 12700 and 11800 cm–1 have been examined by the use of tunable diode lasers in free-running mode. The diode laser emission wavelength was scanned around the gas resonances by simply sweeping its injection current, permitting a direct observation of the absorption line-shapes. Weak overtone absorption lines have been detected by using the wavelength modulation (WM) spectroscopy with 2nd harmonic detection technique and the collisional broadening and shift coefficients have been obtained. The high resolving power and accuracy of the spectrometer permitted a wavenumber error of less than 0.01 cm–1. The correct interpretation of the absorption signals when detecting the second harmonic in the presence of a sloping background is discussed.  相似文献   

18.
SrMoO4 crystals doped with Tm3+ ions have been produced from a melt using the Czochralski method; their spectral-luminescent characteristics have been studied, and laser radiation has been generated at the wavelength of 1.94 μm using laser-diode excitation. The high absorption section at the wavelength of 795 nm, the fairly high luminescence section, the long lifetime at the upper laser level 3F4 of 1.5 ms, and a wide luminescence band allow one to hope for developing efficient tunable Tm3+: SrMoO4 crystal lasers with diode pumping in the range of 1.7–2.0 μm, which are capable of implementing SRS self-transformation of radiation into the middle IR band.  相似文献   

19.
a high repetition rate and high power 532 nm green laser generated by intracavity frequency doubling of a 808 nm laser diode side-pumped ceramic Nd:YAG laser based on BBO electro-optical Q-switch has been demonstrated. in the simple V-folded cavity, the maximum green laser average power 32.6 W was obtained with a pulse width of 58.5 ns at a repetition rate of 10 kHz by using a LBO crystal for frequency doubling, corresponding to a conversion efficiency of 10.9% from diode pumping power to green laser power. An instability of 1.9% was measured over a period of 30 minutes and the beam quality factors were measured to be M x 2 = 3.55, M y 2 = 3.89 at the maximum output power.  相似文献   

20.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号