首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the on-line coupling of solid-phase extraction, based on a restricted-access support with high-performance reverse phase chromatography for the analysis of carbamazepine (CBZ) and carbamazepine-10,11-epoxide (CBZ-E) in human plasma samples is described. A precolumn packed with 25 mum C(18) alkyl-diol support is used for direct plasma injection. Using column-switching techniques, the analytes were enriched on the precolumn by a 5 mM phosphate buffer (pH 7) with 2% of methanol solution at a flow-rate of 0.8 ml min(-1), while proteins and endogenous hydrophilic substances in plasma were washed off to waste. The enriched analytes were then back-flushed onto the analytical C(18) column, separated by a mixture of 10 mM phosphate buffer (pH 7) acetonitrile (70:30 v/v) solution at a flow-rate of 1.0 ml min(-1) and detected by the ultraviolet absorbance set at 212 and 285 nm and without transfer loss. Linear calibration graphs were obtained for sample injection volumes of 50 (0.2-4.0 of mug of CBZ ml(-1) and 0.1-5.0 mug of CBZ-E ml(-1), respectively), and 20 mul (5.0-20.0 mug of CBZ ml(-1)); in either case the r-value was >0.9963. Recoveries from spiked plasma samples were quantitative for both analytes and the coefficients of variation were below 3.83%. The lowest samples concentrations that can be quantified with acceptable accuracy and precision was 0.2 mug CBZ ml(-1) and 0.1 mug CBZ-E ml(-1) when a sample volume of 50 mul was injected. Concentrations of 0.08 and 0.05 mug ml(-1) of CBZ and CBZ-E were considered the limit of detection for a signal-to-noise ratio of 3. Furthermore, the developed column-switching method was successfully applied to the determination of CBZ and CBZ-E in plasma samples of patients submitted to CBZ therapy.  相似文献   

2.
A high-performance liquid chromatographic method with column switching has been developed for the determination of rifapentine in serum. The serum samples were injected onto a precolumn packed with Corasil RP C18 (37-50 microns) after simple dilution with an internal standard in a 1% ascorbic acid solution. Polar serum components were washed out using 0.05 M phosphate buffer. After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by a mu Bondapak C18 column with acetonitrile-tetrahydrofuran-0.05 M phosphate buffer (pH 7.0) (42:5:53, v/v/v) as the mobile phase. The method showed excellent precision with good sensitivity and speed, and a detection limit of 0.1 microgram/ml. The total analysis time was less than 25 min and the mean coefficients of variation for intra- and inter-assay were less than 4.8%. The method has been successfully applied to serum samples from dogs after the oral administration of rifapentine.  相似文献   

3.
Abstract

A simple and sensitive HPLC method was developed for the determination of naproxen in human plasma. The assay employs a microbore column packed with a C18 reversed-phase material (5 μm ODS Hypersil) with an isocratic mixture of acetonitrile and 10 mM phosphate buffer, pH 2.5 (40:60, v/v) as the mobile phase. The mobile phase was pumped at a flow rate of 0.5 ml/min. For sample analysis 200 μl of acetonitrile containing internal standard (flurbiprofen) was added to 100 μl of plasma. After centrifugation 10 mM phosphate buffer, pH 7.4 (200 μl) was added to the tube, then vortexed and centrifuged. The supernatant (20 μl) was injected onto the HPLC column. The chromatographic separation was monitored by a fluorescence detector at an emission wavelength of 350 nm with an excitation wavelength of 225 nm. The direct precipitation of plasma protein using acetonitrile gave a good recovery for both naproxen and the internal standard. The detection limit was 0.1 μg/ml for naproxen. The intra- and inter-assay coefficients of variation at different concentrations evaluated were less than 10%.  相似文献   

4.
Making up part of the unique family of restricted access materials (RAM) the Lichrospher ADS (alkyl-diol silica) sorbents have been developed as special packing materials for precolumns used for LC-integrated sample processing of biofluids. The advantage of such phases consists of direct injection of untreated biological fluids without sample clean-up and elimination of the protein matrix together with an on-column enrichment. The plasma samples, with internal standard phenacetin added (not essential), were brought onto the precolumn (C-18 ADS, 25 micron, 25 x 4 mm i.d.) using a phosphate buffer, 0.1 M, pH 7.0. After washing with the buffer, the ADS column was backflushed with the mobile phase phosphate buffer 0. 05 M pH 7.0: acetonitrile (80:20), thus transporting the analytes onto a reversed-phase column Ecocart 125-3 HPLC cartridge with a LiChrocart 4-4 guard column, both packed with LiChrospher 5 micron 100 RP-18; after separation detection was performed in UV at 260 nm. Essential features of the method include the novel precolumn packing, the absence of sample pretreatment, a quantitave recovery, good precision and accuracy, as well as a considerable reduction of analysis time compared to conventional manual methods applied in bioavailability studies.  相似文献   

5.
A rapid, sensitive and specific assay for 9-chloro-2-(2-furyl) [1,2,4]triazolo[1,5-c]quinazolin-5-imine (I) and its oxo metabolite (II) in plasma was developed and validated employing reversed-phase high-performance liquid chromatography with fluorescence detection. Sample preparation was achieved by a simple ethyl acetate extraction from plasma buffered at pH 10 (0.1 M boric acid-0.1 M potassium chloride). Chromatographic analyses were performed isocratically on a C18 column, with a mobile phase consisting of methanol-0.2 M sodium acetate buffer, pH 5.0 (67:33, v/v). Chromatographic run time was less than 8 min. The assay was linear (r greater than 0.9998) over the concentration range 1.50-10,000 ng/ml for both I and II; for individual studies, curves covering a range of two orders of magnitude were generally employed. Limits of detection for I and II were 0.5 and 1.0 ng/ml, respectively. A preliminary investigation of the plasma concentrations of I and II in the rat following a single 30 mg/kg oral dose demonstrated the applicability of the method for pharmacokinetic studies.  相似文献   

6.
The group of LiChrospher ADS (alkyl-diol silica) sorbents that make part of a unique family of restricted-access materials, have been developed as special packings for precolumns used in the LC-integrated sample processing of biofluids. The advantage of these sorbents lies in the direct injection of untreated biological fluids, that is without sample clean-up, the elimination of the protein matrix with a quantitative recovery together with an on-column enrichment. The present method is based on previous work applying UV detection at 260 nm for ketoprofen determinations. Plasma samples introduced to the ADS precolumn using a 0.1 M phosphate buffer, pH 7.0. After washing with the buffer the ADS column was backflushed with the mobile phase 0.01 M phosphate buffer-6% (v/v) 2-propanol-5 mM octanoic acid at a pH of 5.5, thus transporting the analytes to the chiral-HSA (human serum albumin) (100x4.0 mm) column where the separation of the ketoprofen enantiomers was achieved with a resolution factor of 1.4. The developed column-switching method was fully applicable to plasma injections.  相似文献   

7.
Chao YY  Wei YT  Lee CT  Kou HS  Huang YL 《Analytical sciences》2011,27(10):1025-1030
An on-line microdialysis/high-performance liquid chromatography method was developed for the simultaneous determination of melamine and cyanuric acid in non-dairy coffee creamer. To collect these analytes from aqueous samples, the microdialysis system featured a microdialysis probe incorporating a polyarylethersulfone membrane and employed 0.05 M HCl in 0.1% (v/v) MeOH as the perfusate, with optimal efficiency obtained at a flow rate of 1 μL min(-1). The chromatographic conditions were optimized when using a reverse-phase phenyl column and a mobile phase of phosphate buffer solution in 10% (v/v) MeOH, buffered at pH 3.0. Good linearity relationship (r(2) > 0.9987), intra- and inter-day precisions (RSDs < 6.6%), recoveries (96.9 - 105.0%), and limits of detection (melamine, 3 ppb; cyanuric acid, 150 ppb) were observed for the two analytes. This method has been successfully applied to simultaneous determination of melamine and cyanuric acid in commercial creamers with the recoveries in the range of 97.5 to 102.6%.  相似文献   

8.
A simple and accurate HPLC method for the determination of orthophosphate in the presence of large amounts of organophosphates is described. The method is based on the formation and separation of the molybdenum orthophosphate complex. In order to prevent the hydrolysis of organophosphates, the sample was deproteinized with silicotungstate in acetate buffer (pH 4.0) under ice-cooling and then treated with ammonium molybdate in maleate buffer (pH 7.0). The sample was injected onto Styragel 60 A column (5 mm ID x 100 mm) with 38% (v/v) acetonitrile containing 0.3 M sulfuric acid as eluent. Detection was at 310 nm. The method was applied to the determination of orthophosphate in liver, kidney, spleen and mouse blood.  相似文献   

9.
A simple, precise, and sensitive high-performance liquid chromatographic method was developed and validated for the simultaneous determination of potassium clavulanate and cefixime in synthetic mixture form. The analytes were separated on a C18 column by using 0.03 M disodium hydrogen phosphate buffer (pH 6.5)-methanol (84 + 16, v/v) as the mobile phase with detection at 220 nm. The method exhibited high sensitivity and good linearity in the concentration ranges of 12.5-62.5 and 20-100 microg/mL for potassium clavulanate and cefixime, respectively. The total run time for the 2 components was <8 min, and the average recovery was >101.5% with a relative standard deviation of <1.0%. The proposed method was validated according to guidelines of the International Conference on Harmonization by evaluation of linearity, recovery, selectivity, robustness, limits of detection and quantitation, and within- and between-day precision. The results obtained for the synthetic mixture show that the method is highly precise and accurate for the simultaneous determination of potassium clavulanate and cefixime.  相似文献   

10.
A reversed-phase high-performance liquid chromatographic method for the analysis of 1-aminocyclopropanecarboxylic acid (ACPC) from plasma or brain tissue is described. Samples were deproteinized with perchloric acid, centrifuged, alkalinized with potassium hydroxide and recentrifuged. The supernatants were derivatized with o-phthaldialdehyde and injected onto a C18 3-microns column (100 mm x 4 mm I.D.) pumped with 1 ml/min methanol-acetonitrile-0.1 M sodium phosphate buffer pH 6.0 (28:5:67, v/v). The retention times for ACPC and the internal standard were 15 and 31 min, respectively. The minimum detectable amount of ACPC was 0.08 nmol. The extraction recovery of ACPC (2.7-270 nmol) from spiked plasma or brain tissue ranged from 88 to 109%. The intra- and inter-day coefficients of variation for 27 nmol ACPC were 3.9 and 4.9%, respectively. This method was utilized to obtain preliminary pharmacokinetic parameters following ACPC administration to mice.  相似文献   

11.
A fully automated analytical system based on liquid-solid extraction combined with column liquid chromatography is described for the determination of diclofenac in plasma. After addition of pH 5 buffer and the internal standard solution to the plasma sample, both sample preparation via a C18 disposable extraction column and injection were performed by a Gilson ASPEC system. Diclofenac and the internal standard were separated on a reversed-phase column, using methanol-pH 7.2 phosphate buffer (56:44, v/v) as mobile phase at a flow-rate of 0.4 ml/min. The reproducibility and accuracy of the method were acceptable over the concentration range 31-3140 nmol/l in plasma.  相似文献   

12.
An isocratic high-performance liquid chromatographic method for separation and determination of phenolphthalein and its metabolite, phenolphthalein-glucuronide, using bromocresol purple as an internal standard is described. The method uses a mobile phase of 50 mM phosphate buffer (pH 7.7)-methanol (52.5:47.5, v/v), a 3-μm reversed-phase C18 column (50 × 4.6-mm i.d.), a flow rate of 1 ml/min, and UV detector wavelength of 230 nm. The most important variables that can affect the retention of these compounds (i.e., organic modifier concentration, buffer concentration, and pH) were systematically studied. Two different retention orders were observed, depending on buffer concentration and pH. The effects on retention of the addition of triethylamine or acetic acid to the mobile phase are also discussed. This method has been developed for future application to the determination of phenolphthalein and phenolphthalein-glucuronide in biological fluids such as plasma, bile, and urine of rats within a study involving a new model for enterohepatic recirculation and pharmacokinetics.  相似文献   

13.
High-performance liquid chromatographic methods for quantification of a novel carbapenem anti-infective agent, I, in plasma and urine have been developed, validated, and applied to clinical samples. The carbapenem is stabilized in the matrix by the addition of a non-nucleophilic buffer, rapid freezing, and storage at -70 degrees C. After addition of another carbapenem, II, as internal standard, plasma proteins are precipitated with acetonitrile, which is subsequently extracted from the sample with methylene chloride. A portion of the aqueous phase is injected onto a reversed-phase phenyl column that is eluted with 4% (v/v) acetonitrile in 15 mM ammonium phosphate (pH 7.4). The urine assay entails addition of the internal standard II to buffered urine, which is subsequently extracted with methylene chloride prior to injection of the aqueous phase onto a cation-exchange column. The urine assay mobile phase is 5% v/v tetrahydrofuran in 100 mM sodium acetate (pH 5.4). The detector response at 313 nm is a linear (r greater than 0.99) function of concentration over the ranges 0.50-100 micrograms/ml and 2.0-200 micrograms/ml for the plasma and urine assays, respectively. Thermal degradation products do not interfere with either assay. These assays have proven to be accurate, precise, reproducible, and rugged during clinical sample analyses.  相似文献   

14.
Simultaneous HPLC determination of the analgetic agent tramadol, its major pharmacodynamically active metabolite (O-desmethyltramadol) in human plasma is described. Simple methods for the preparation of the standard of the above-mentioned tramadol metabolite and N1,N1-dimethylsulfanilamide (used as the internal standard) are also presented. The analytical procedure involved a simple liquid-liquid extraction of the analytes from the plasma under the conditions described previously. HPLC analysis was performed on a 250x4 mm chromatographic column with LiChrospher 60 RP-selectB 5-microm (Merck) and consists of an analytical period where the mobile phase acetonitrile-0.01 M phosphate buffer, pH 2.8 (3:7, v/v) was used, and of a subsequent wash-out period where the plasmatic ballast compounds were eluted from the column using acetonitrile-ultra-high-quality water (8:2, v/v). The whole analysis, including the equilibration preceding the initial analytical conditions lasted 19 min. Fluorescence detection (lambda(ex) 202 nm/lambda(em) 296 nm for tramadol and its metabolite, lambda(ex) 264 nm/lambda(em) 344 nm for N1,N1-dimethylsulfanilamide) was used. The validated analytical method was applied to pharmacokinetic studies of tramadol in human volunteers.  相似文献   

15.
Sensitive and accurate high-performance liquid chromatographic methods have been developed for the simultaneous determination of thiocolchicoside (TC)-glafenine (GF) (Mix I) and thiocolchicoside-floctafenine (FN) (Mix II) in their pharmaceutical formulations. The analysis for both mixtures was performed using 250 mm × 4.6 mm i.d., 5 μm particle size C18 Waters Symmetry column. The mobile phase consisted of methanol-0.035 M phosphate buffer (50:50, v/v) of pH 4.5 for Mix I and methanol-0.03 M phosphate buffer (70:30, v/v) of pH 4 for Mix II with flow rate of 1 mL/min and UV detection at 400 nm in both cases. The calibration plots were rectilinear over the concentration range of 0.2-2 μg/mL for TC in both mixtures and 20-200 μg/mL for each of GF and FN . The limits of detection for TC and GF were 0.05 μg/mL and 0.62 μg/mL, respectively, and for TC and FN were 0.02 μg/mL and 0.70 μg/mL, respectively. Additionally, the proposed methods were successfully applied to their combined tablets with average percentage recoveries of 100.35 ± 0.61 and 100.57 ± 0.72% for TC and GF respectively and for TC and FN the percentage recoveries were 101.2 ± 0.72 and 100.36 ± 0.67%, respectively. The results obtained were favorably compared with those given using the comparison methods.  相似文献   

16.
Abstract

A sensitive and automatic method for the analysis of indomethacin in plasma has been developed using liquid-solid extraction (LSE) on disposable extraction cartridges (DECs) coupled to high-performance liquid chromatography (HPLC). The fully automated system handles the plasma samples by performing the same operations as in a manuel procedure by means of an autosampler equipped with a robotic arm at which is attached a needle dispensing the different liquids. The DEC is first conditioned with methanol and phosphate buffer pH 7.4. A 1.0-mL volume of plasma is then applied onto the DEC; the latter is washed with the same buffer before the elution with 0.25 mL of methanol. The eluting strength of the eluate is reduced by dispensing 0.30 mL of phosphate buffer pH 7.4 in the collection tube prior to the injection onto the HPLC column via a 0.1-ml loop. The chromatographic separation is performed on an octadecylsilica column with a mixture of methanol and phosphate buffer pH 7.4 as mobile phase (60:40, v/v) and indomethacin is monitored photometrically at 254 nm. The effect of the plasma dispensing flow rate on the drug recovery and the importance of the guard column for the stability of the analytical column have been studied. The absolute recovery of the drug is 96.0 9s and the limit of detection, 2 ng/mL. At the concentration of 100 ng/mL, relative standard deviations of 1.5% (with in-day) and 2.3% (between-day) have been obtained.  相似文献   

17.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

18.
The aim of study was to develop a suitable analytical method for simultaneous estimation of levodopa, carbidopa and 3‐O‐methyl dopa in rat plasma. Chromatographic separation of plasma samples was achieved using a reverse‐phase C18 column. The mobile phase used consisted of a mixture of methanol and phosphate buffer (10 mM , pH 3.50) in the ratio of 90:10 v/v. All analytes were estimated by electrochemical detection at +800 mV. The developed method has been validated as per the standard guidelines. Precision study results were found to be satisfactory, with percentage relative standard deviation for repeatability and intermediate precision <3.96 and 6.56%, respectively, for all analytes detected in rat plasma. The developed method in rat plasma was found to be simple, rapid, accurate, precise and specific. The proposed method has been successfully applied for analysis of rat plasma samples obtained during an oral pharmacokinetic study of sustained release pellets of levodopa and carbidopa in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Summary A new high performance liquid chromatographic method was developed using a column-switching technique for the simultaneous determination of cephalexin, cefuroxime, cefoxitin and cephaloridine in plasma. The plasma samples were injected onto a precolumn packed with Corasil RP C18 (37–50 m) after simple dilution with an internal standard solution in 0.01 M acetate buffer (pH 3.5). Polar plasma components were washed out using 0.01 M acetate buffer (pH 3.5). After valve switching, the concentrated drugs were desorbed in back-flush mode and separated on a Partisil ODS-3 column using acetonitrile in 0.02 M acetate buffer (pH 4.3) (1585, v/v) as the mobile phase. The method showed excellent precision with good sensitivity and speed with a detection limit of 0.5 g/ml. The total analysis time per sample was less than 25 min, and the mean coefficients of variation for intra- and inter-assay were both less than 4.9 %.This method has been successfully applied to plasma from rats after subcutaneous injection of cefuroxime.  相似文献   

20.
Three simple, rapid, and accurate methods, i.e., the derivative ratio spectra-zero-crossing method (method I), double divisor-ratio spectra derivative method (method II), and column reversed-phase high-performance liquid chromatographic (RP-HPLC) method (method III) were developed for the simultaneous determination of doxylamine succinate (DOX), pyridoxine hydrochloride (PYR), and folic acid (FA) in their ternary mixtures and in tablets. In methods I and II, the calibration graphs were linear in the range of 2.5-80, 1.0-40, and 1.0-30 microg/mL for DOX, PYR, and FA, respectively. In the HPLC method, the separation of these compounds was performed using mobile phase consisting of 0.05 M phosphate buffer (pH 6.3)-methanol-acetonitrile (50 + 20 + 30, v/v/v), and UV detection was performed at 263 nm. Linearity was observed between the concentrations of the analytes and peak areas [correlation coefficient (r) > or =0.9998] in the concentration range of 1.0-200, 4.0-600, and 4.0-600 microg/mL for DOX, PYR, and FA, respectively. The standard deviation of retention time in method III was 0.011, 0.015, and 0.016 for DOX, PYR, and FA, respectively. The precision studies for all of the methods gave relative standard deviation values of <2%. The results obtained from the methods were statistically compared by means of Student's t-test and the variance ratio F-test. It was concluded that all of the developed methods were equally accurate, sensitive, and precise. These methods could be applied to determine DOX, PYR, and FA in their combined dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号