首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While chlorine evolution in the low overpotential region takes place preferentially on the weakly adsorbing surface sites, in the presence of cyclohexene the strongly adsorbing region is involved. This change in the reaction zone is the result of the occurrence of a new reaction which dominates the recombination of chlorine atoms.
, . , .
  相似文献   

2.
The electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) has been studied using voltammetry, chronoamperometry, and in situ infrared spectroscopy. The oxidative adsorption of ammonia results in the formation of NH(x) (x = 0-2) adsorbates. On Pt(111), ammonia oxidation occurs in the double-layer region and results in the formation of NH and, possibly, N adsorbates. The experimental current transients show a hyperbolic decay (t(-1)), which indicates strong lateral (repulsive) interactions between the (reacting) species. On Pt(100), the NH(2) adsorbed species is the stable intermediate of ammonia oxidation. Stabilization of the NH and NH(2) fragments on Pt(111) and Pt(100), respectively, is in an interesting agreement with recent theoretical predictions. The Pt(111) surface shows extremely low activity in ammonia oxidation to dinitrogen, thus indicating that neither NH nor N (strongly) adsorbed species are active in dinitrogen production. Neither nitrous oxide nor nitric oxide is the product of ammonia oxidation on Pt(111) at potentials up to 0.9 V, as deduced from the in situ infrared spectroscopy measurements. The Pt(100) surface is highly active in dinitrogen production. This process is characterized by a Tafel slope of 30 mV decade(-1), which is explained by a rate-determining dimerization of NH(2) fragments followed by a fast decay of the resulting surface-bound hydrazine to dinitrogen. Therefore, the high activity of the Pt(100) surface for ammonia oxidation to dinitrogen is likely to be related to its ability to stabilize the NH(2) adsorbate.  相似文献   

3.
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.  相似文献   

4.
Ethanol oxidation on platinum stepped surfaces vicinal to the (111) pole modified by tin has been studied to determine the role of this adatom in the oxidation mechanism. Tin has been slowly deposited so that the initial stages of the deposition take place on the step, and deposition on the terrace only occurs when the step has been completely decorated. Voltammetric and chronoamperometric experiments demonstrate that tin on the step catalyzes the oxidation. The maximum enhancement is found when the step is completely decorated by tin. FTIR experiments using normal and isotopically labeled ethanol have been used to elucidate the effect of the tin adatoms in the mechanism. The obtained results indicate that the role of tin is double: (i) when the surface has sites capable of breaking the C-C bond of the molecule, that is, when the step sites are not completely covered by tin, it promotes the oxidation of CO formed from the molecular fragments to CO(2) through a bifunctional mechanism and (ii) it catalyzes the oxidation of ethanol to acetic acid.  相似文献   

5.
The electrooxidation of hydrazine and its methylderivatives (methylhydrazine and 1,1-dimethylhydrazine) on bare Pt and Pt electrode surfaces modified by underpotential metal adsorbates was studied in acetonitrile. On bare Pt, one-third of the molecules of the substances under examination undergo a two-electron oxidation to the corresponding diimides, while the remaining number of molecules act as the required proton acceptors in neutral acetonitrile. In alkaline solutions, hydrazine undergoes a quantitative four-electron oxidation process, while its methyl derivatives are oxidized quantitatively to the corresponding diimides in the same media. The pronounced inhibition effects on hydrazine oxidation caused by underpotential T1 and Pb adsorbates were interpreted in terms of a change in the chemical interaction of hydrazine molecules and the electrode surface modified by the underpotential metal adsorbates.  相似文献   

6.
Ruthenium and osmium were deposited in submonolayer amounts on Pt(111) single crystal surfaces using the previously reported ‘spontaneous deposition’ procedure [Chrzanowski et al., Langmuir, 13 (1997) 5974]. Such surfaces were first explored using ex situ scanning tunneling microscopy (STM) to image the deposition characteristics of ruthenium and osmium islands on Pt(111). It was found that, using the spontaneous deposition procedure, a maximum coverage of 0.20 ML ruthenium is formed on the surface after 120 s of exposure to a RuCl3 solution in 0.1 M HClO4. A homogeneous deposition on the Pt(111) surface was found, with no observed preferential deposition on step edges or surface defect sites. In contrast, in the spontaneous deposition of osmium, osmium clusters form preferentially at, though not limited to, surface defect sites and step edges. Osmium island deposition occurs at a greater rate than ruthenium on Pt(111), and possible explanations are presented. Methanol activity on the Pt(111)/Ru and Pt(111)/Os surfaces is also studied, using the coverage values determined to yield the highest activity for methanol electro-oxidation (0.20 ML coverage for Ru and 0.15 ML for Os). At potentials more negative than 0.40 V vs. RHE, the Pt(111)/Ru surface yields a higher surface activity than Pt(111)/Os. However, at potentials more positive than 0.04 V, Pt(111)/Os exhibits demonstrably higher surface activity. The relevance of this data is discussed and future avenues of interest are indicated.  相似文献   

7.
The authors present a generic model of CH4 oxidation on Pt with the emphasis on the role of surface-oxide formation. The latter process is treated in terms of the theory of first-order phase transitions. The corresponding Monte Carlo simulations indicate that the surface-oxide formation may result in stepwise features in the reaction kinetics. Specifically, with increasing CH4 pressure and/or decreasing O2 pressure, the model predicts a sharp transition from a low-reactive state with the surface completely covered by oxide to a high-reactive state with the surface covered by chemisorbed oxygen. In the former case, the reaction is first order in CH4 and zero order in O2. In the latter case, both reaction orders are positive. All these findings help in interpreting available experiments.  相似文献   

8.
This work stressed the multistep character of the alcohol electro-oxidation reactions. The concomitant dependency of the mechanistic aspects and the influence of the platinum single-crystalline surface structures, with and without defects, in methanol, ethanol, and glycerol electro-oxidation reactions were emphasized. Despite the different surface crystalline structures, the active site depends on the specific surface configurations.  相似文献   

9.
An uncollimated molecular beam (free jet) of CO and O2 molecules incident on a polycrystalline Pt surface at 775 K in vacuo produces vibrationally hot CO2 molecules at a density sufficient for infrared emission spectrometry. Analysis of spectra at a resolution of 0.1 cm?1 clearly shows that nascent product molecules have much more internal excitation than would be the case for equilibrium at the surface temperature.  相似文献   

10.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

11.
The infrared (IR) chemiluminescence spectra of CO2 were measured during the steady-state CO + O2 reaction over Pt(110) and Pt(111) surfaces. Analysis of the IR emission spectra indicates that the bending vibrational temperature (TVB), as well as the antisymmetric vibrational temperature (TVAS), was higher on Pt(110) than on Pt(111). On the Pt(110) surface, the highly excited bending vibrational mode compared to the antisymmetric vibrational mode was observed under reaction conditions at low CO coverage (theta(CO) < 0.2) or at high surface temperatures (TS > or = 700 K). This can be related to the activated complex of CO2 formation in a more bent form on the inclined (111) terraces of the Pt(110)(1 x 2) structure. On the other hand, at high CO coverage (theta(CO) > 0.2) or at low surface temperatures (TS < 650 K), TVAS was higher than TVB, which can be caused by the reconstruction of the Pt(110)(1 x 2) surface to the (1 x 1) form with high CO coverage.  相似文献   

12.
It was demonstrated that adsorbed CO is obtained from the reduction of NaHCO3 solution when Pt(100), Pt(110), disordered Pt(111) and polycrystalline electrodes are employed. Reduction of CO2 coming from the dissociation of the hydrogencarbonate anion is proposed as the reaction that produces CO. By using Fourier transform infrared spectroscopy, linear and multi-bonded CO were detected on polycrystalline platinum electrodes. The shape of the band associated with linearly adsorbed CO is monopolar as a consequence of the partial overlapping, at lower wavenumbers, of the absolute bands at both potentials (0.05 and 0.35 V).  相似文献   

13.
Superhydrophobic surfaces were prepared from solutions of isotactic polypropylenes of various molecular weights using soft chemistry. Varying the conditions of the experiments (polymer concentration and initial amount of the coated solution) allowed us to optimize the superhydrophobic behavior of the polymer film. Results show that decreasing the concentration and/or film thicknesses decreases the probability to get superhydrophobicity for all polypropylenes tested. Measurement and analysis of advancing and receding contact angles as well as estimation of surface homogeneity were performed. Similar results were obtained with syndio- as well as atactic polypropylenes.  相似文献   

14.
15.
The microscopic structure of the Pt(3)Sn(111) surface in an electrochemical environment has been studied by a combination of ex situ low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and low-energy ion scattering (LEIS) and in situ surface X-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy. In ultrahigh vacuum (UHV) the clean-annealed surface produces a p(2 x 2) LEED pattern consistent with the surface composition, determined by LEIS, of 25 at. % Sn. SXS results show that the p(2 x 2) structure can be "transferred" from UHV into 0.5 M H(2)SO(4) and that the surface structure remains stable from 0.05 to 0.8 V. At 0.05 V the expansion of Pt surface atoms, ca. +2% from the bulk lattice spacing, is induced by adsorption of underpotential-deposited (UPD) hydrogen. At 0.5 V, where Pt atoms are covered by (bi)sulfate anions, the topmost layer is contracted relative to 0.05 V, although Sn atoms expand significantly, ca. 8.5%. The p(2 x 2) structure is stable even in solutions containing CO. In contrast to the Pt(111)-CO system, no ordered structures of CO are formed on the Pt(3)Sn(111) surface and the topmost layer expands relatively little (ca. 1.5%) from the bulk lattice spacing upon the adsorption of CO. The binding site geometry of CO on Pt(3)Sn(111) is determined by FTIR. In contrast to the near invariant band shape of a-top CO on Pt(111), changes in band morphology (splitting of the band) and vibrational properties (increase in the frequency mode) are clearly visible on the Pt(3)Sn(111) surface. To explain the line shape of the CO bands, we suggest that in addition to alloying effects other factors, such as intermolecular repulsion between coadsorbed CO and OH species, are controlling segregation of CO into cluster domains where the local CO coverage is different from the coverage expected for the CO-CO interaction on an unmodified Pt(111) surface.  相似文献   

16.
The mechanism of CO oxidation reaction on oxygen-precovered Pt(111) surfaces has been studied by using time-resolved near-edge x-ray absorption fine structure spectroscopy. The whole reaction process is composed of two distinct paths: (1) a reaction of isolated oxygen atoms with adsorbed CO, and (2) a reaction of island-periphery oxygen atoms after the CO saturation. CO coadsorption plays a role to induce the dynamic change in spatial distribution of O atoms, which switches over the two reaction paths. These mechanisms were confirmed by kinetic Monte Carlo simulations. The effect of coadsorbed water in the reaction mechanism was also examined.  相似文献   

17.
We have investigated the atomic and electronic structure, chemical composition, and oxidation characteristics of the surfaces of icosahedral, Al-rich quasicrystals, using a variety of surface-sensitive techniques (LEED, XPS, STM, AES). We have systematically investigated the way that these traits vary with preparation conditions (e.g. sputtering and then annealing to various temperatures, vs. fracture), with surface symmetry (e.g. 2f vs. 3f vs. 5f surfaces), and with bulk composition (e.g. i-Al–Pd–Mn vs. i-Al–Cu–Fe). We have also compared our results for the quasicrystals with results for crystalline approximants and other related crystalline phases. Our main conclusions are that, under specific conditions of sputter-annealing, the bulk atomic and electronic structures of the clean quasicrystal propagate to the surface. Also, the oxidation chemistry is dominated by that of the primary constituent, aluminum.  相似文献   

18.
The electron-stimulated adsorption of oxygen from the gas phase is studied. The basic laws governing the changes in the surface structure induced by electron-stimulated adsorption are determined.  相似文献   

19.
The electrooxidation of HCOONa was carried out over a wide range of pH on Pt. HCOO and its associated form of HCOOH do not show any difference in electrochemical behaviour. A voltammetric study demonstrates the formation of two kinds of poisoning species in the hydrogen (X1) and double-layer (X2) regions. Their dependences on the potential and pH were examined. Constant polarization measurements give the rate expression, i = kH+)−0.43 exp(0.4Fφn/RT), independent of the concentrations of HCOO and HCOOH. The rate-determining step is concluded to be HCOO (a) → COO (a)+H+ + e or HCOOH(a) → COOH(a)+H+ + e. The negative reaction order with respect to H+ was explained through the retarding action of X2. The nature of X1 and X2 is discussed.  相似文献   

20.
运用电化学循环伏安和石英晶体微天平研究了1,4-丁二醇(1,4-BDL)在Pt电极及以Sb和S吸附原子修饰的Pt(Pt/Sbad和Pt/Sad)电极上的吸附和氧化过程.结果表明,1,4-丁二醇的氧化与电极表面氧物种有着极其密切的关系,表面质量变化提供了吸附原子电催化作用的新数据.Pt电极表面Sb吸附原子能在较低的电位下吸附氧,可显提高1,4-丁二醇电催化氧化活性.与Pt电极相比,1,4-丁二醇在饱和吸附Sb原子的Pt电极上氧化的峰电位负移了0.20V,峰电流增加了1.5倍.相反,Pt电极表面S吸附原子的氧化会消耗表面氧物种,饱和吸附的S原子抑制了1,4-丁二醇的氧化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号