首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C and 35/37Cl NMR relaxation measurements on several model systems demonstrate that the solvation of cellulose by the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) involves hydrogen-bonding between the carbohydrate hydroxyl protons and the IL chloride ions in a 1 ratio 1 stoichiometry.  相似文献   

2.
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C4mim]+ cation have been observed, and this study reveals this to be a general feature of the long-chain 1-alkyl derivatives. Analysis of mixtures of [C6mim]Cl and [C6mim][PF6] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.  相似文献   

3.
Banana pulps at any ripening stage can be completely dissolved in solvent systems based on the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl), and variations in the carbohydrate composition of the fruit analyzed directly on the resulting solutions using high-resolution 13C NMR spectroscopy.  相似文献   

4.
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl)phosphonium acetate, [P(8 8 8 12)][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using (13)C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)(2) in 1-ethyl-3-methylimidazolium acetate, [C(2)mim][OAc], crystals were obtained that revealed the structure of [C(2)mim][Cu(3)(OAc)(5)(OH)(2)(H(2)O)]·H(2)O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.  相似文献   

5.
在干燥氩气氛下, 用等摩尔的高纯无水FeCl3和氯化1-甲基-3-乙基咪唑([C2mim][Cl])直接搅拌混合, 制备棕色透明的含过渡金属铁的离子液体[C2mim][FeCl4]. 在298.15 K下, 利用具有恒温环境的溶解反应热量计测定了这种离子液体的摩尔溶解焓(ΔsHm). 针对[C2mim][FeCl4]溶解于水后即分解的特点, 在Pitzer电解质溶液理论基础上, 提出了确定这种离子液体标准摩尔溶解焓的新方法, 得到了[C2mim][FeCl4]的标准摩尔溶解焓(ΔsH 0—m=-76.6 kJ/mol), 以及Pitzer焓参数组合: β(0)LFe,Cl+β(0)L[C2mim], Cl+ΦLFe,[C2mim]=0.072209和β(1)LFe,Cl+β(1)L[C2mim], Cl=0.15527. 借助热力学循环和Glasser离子液体晶格能理论, 用Fe3+, Cl-和[C2mim]+的离子水化焓数据以及[C2mim][FeCl4]标准摩尔溶解焓, 估算得到了配离子[FeCl4]-(g)解离成Fe3+(g)和4Cl-(g)的解离焓为5659 kJ/mol. 这个结果揭示了离子液体[C2mim][FeCl4]的标准摩尔溶解焓绝对值并不很大的原因, 即很大的离子水化焓被很大的[FeCl4]-(g)的解离焓相互抵消.  相似文献   

6.
The application of different ionic liquids (IL), namely 1-N-butyl-3-methylimidazolium chloride ([C(4)mim](+)Cl(-)), 3-methyl-N-butyl-pyridinium chloride and benzyldimethyl(tetradecyl)ammonium chloride were investigated as solvents for cellulose. The ILs used have the ability to dissolve cellulose with a degree of polymerization in the range from 290 to 1 200 to a very high concentration. Using [C(4)mim](+)Cl(-), no degradation of the polymer appears. By (13)C NMR measurement it was confirmed that this IL is a so-called non-derivatizing solvent. [C(4)mim](+)Cl(-) can be applied as a reaction medium for the synthesis of carboxymethyl cellulose and cellulose acetate. Without using any catalyst, cellulose derivatives with high degree of substitution could be prepared.(13)C NMR spectrum of cellulose dissolved in the IL [C(4)mim](+)Cl(-) (top). The (13)C NMR spectrum of cellulose dissolved in DMSO/tetrabutylammonium fluoride trihydrate is shown for comparison (bottom).  相似文献   

7.
A rapid and simple analytical method was developed for the simultaneous and quantitative determination and separation of hydrophilic imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl; 1-hexyl-3-methylimidazolium chloride, [C(6)mim]Cl; 1-octyl-3-methylimidazolium chloride, [C(8)mim]Cl; 1-allyl-3-methylimidazolium chloride, [Amim]Cl; or 1-allyl-3-methylimidazolium bromide, [Amim]Br) with miscible ethyl acetate and EtOH and their mixtures using reverse phase liquid chromatography coupled with refractive index detection (RPLC-RI). The influence of 60 to 100% (volume percentage) methanol in the mobile phase on the IL systems ([C(4)mim]Cl, [C(6)mim]Cl, [C(8)mim]Cl, [Amim]Br, or [Amim]Cl)-ethyl acetate-EtOH was investigated. The optimum mobile phase for the system [C(8)mim]Cl-ethyl acetate-EtOH, [C(4)mim]Cl-ethyl acetate-EtOH, [Amim]Br-ethyl acetate-EtOH and [Amim]Cl-ethyl acetate-EtOH was methanol/water (60:40, v/v), and methanol/water (70:30, v/v) for [C(6)mim]Cl-ethyl acetate-EtOH. Under optimum mobile phase conditions for each system, the RSD of the retention time ranged from 0.02 to 0.04%, and the RSDs of the peak area percent ranged from 0.23 to 1.85%, which showed good reproducibility of the RPLC-RI method. The RPLC-RI method can determine IL, ethyl acetate, and EtOH simultaneously in 5 min, and the analytes, especially IL, can be eluted completely. The results show that the RPLC-RI method can be used to separate and determine ILs in mixtures with organic compounds simultaneously and quantitatively.  相似文献   

8.
The ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was successfully used as alternative solvent for native chemical ligation of peptide fragments to produce model peptide LYRAXCRANK (X = G, A, L, N, Q, K, and F). The commonly used buffer system including thiol additives such as thiophenol and benzyl mercaptan can be replaced by the nontoxic ionic liquid [C2mim][OAc]. In addition to improving the solubility of the peptides in [C2mim][OAc], yields and rates of the ligation reactions were found to be efficiently enhanced.  相似文献   

9.

Abstract  

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7% mol, or DS 0.017) of cellulose after dissolution in technical grade [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2mim]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.  相似文献   

10.
With the purpose of assessing the reactivity of chloride ions dissolved in ionic liquids (ILs), a relative scale for the solvation of chloride is given for a series of ILs based on the bis(trifluoromethane)sulfonimide ([Tf(2)N]) anion and different cations, 1-butyl-3-methylimidazolium ([bmim]), 1-butyl-2,3-dimethylimidazolium ([bdmim]), 1-butyl-1-methylpyrrolidinium ([bmpy]), 1-butylpyridinium ([bpy]), 1-pentyl-1,1,1-triethylammonium ([C(5)e(3)am]), and 1-(2-hydroxy)ethyl-3-methylimidazolium ([mimeOH]). Insights into the solvation of chloride are achieved by the thermodynamic study of the reaction of dissociation of a chloride-templated nickel(II) metallacage performed at various temperatures by UV-visible spectroscopy in each IL. The order of chloride solvation [C(5)e(3)am][Tf(2)N] < [bmpy][Tf(2)N] < [bmim][Tf(2)N] 相似文献   

11.
The influence of two salts as additives namely sodium chloride and sodium sulphate and a nonelectrolyte, 2-butoxyethanol on surface chemical and aggregation characteristics of ionic liquids (IL) of 1-octyl-3-methylimidazolium chloride, [C8mim][Cl], 1-octyl-3-methylimidazolium bromide, [C8mim][Br], and 1-octyl-3-methylimidazolium iodide, [C8mim][I] in aqueous media were monitored through surface tension and small angle neutron scattering measurements. The addition of salts drastically decreased the critical aggregation concentration (CAC) and increased the area per adsorbed IL molecule. The co-ions of salts modify the surface of IL molecules and aggregates through various interactions such as charge neutralization, specific interactions and dehydration The results obtained by analyzing the SANS curves in the whole Q range showed that the oblate ellipsoidal shape of the aggregates of ionic liquids is un-altered upon the addition of additives. However the additives facilitate the growth of the aggregates in to microstructures with cubic packing at high salt concentrations.  相似文献   

12.
Access to lanthanide acetate coordination compounds is challenged by the tendency of lanthanides to coordinate water and the plethora of acetate coordination modes. A straightforward, reproducible synthetic procedure by treating lanthanide chloride hydrates with defined ratios of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) has been developed. This reaction pathway leads to two isostructural crystalline anhydrous coordination complexes, the polymeric [C2mim]n[{Ln2(OAc)7}n] and the dimeric [C2mim]2[Ln2(OAc)8], based on the ion size and the ratio of IL used. A reaction with an IL : Ln-salt ratio of 5 : 1, where Ln=Nd, Sm, and Gd, led exclusively to the polymer, whilst for the heaviest lanthanides (Dy−Lu) the dimer was observed. Reaction with Eu and Tb resulted in a mixture of both polymeric and dimeric forms. When the amount of IL and/or the size of the cation was increased, the reaction led to only the dimeric compound for all the lanthanide series. Crystallographic analyses of the resulting salts revealed three different types of metal-acetate coordination modes where η2μκ2 is the most represented in both structure types.  相似文献   

13.
Self aggregation of the ionic liquids, 1-butyl-3-methylimidazolium chloride [C4mim][Cl], 3-methyl-1-octylimidazolium chloride [C8mim][Cl], 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4], N-butyl-3-methylpyridinium chloride [C4mpy][Cl], in aqueous solution has been investigated through 1H nuclear magnetic resonance (NMR) and steady-state fluorescence spectroscopy. Aggregation properties were determined by application of mass action theory to the concentration dependence of 1H NMR chemical shifts. Aggregation properties showed fairly good agreement with the previously reported results obtained from small angle neutron scattering, conductivity, and surface tension measurements. A detailed analysis of chemical shifts of water and various protons in ILs has been employed to probe the aggregate structure. Fluorescence spectroscopy provided important information about the critical aggregation concentration (cac) and the microenvironment of the aggregates. We could also observe a break point quite consistent with that of 1H NMR and fluorescence spectroscopy at cac from the concentration dependence of refractive index measurements. Standard free energies of aggregation DeltaGom of various ILs derived using the refractive index/concentration profiles were found comparable to those of classical ionic surfactants.  相似文献   

14.
The solvation and aggregation of the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) in water and dimethylsulfoxide (DMSO) were examined by analysis of (1)H and (35/37)Cl chemical shift perturbations and molecular dynamics (MD) simulations. Evidence of aggregation of the IL n-butyl chains in aqueous environments at IL concentrations of 75-80 wt% was observed both in the NMR experiments and in the MD simulations. The studies also show that [C4mim]Cl behaves as a typical electrolyte in water, with both ions completely solvated at low concentrations. On the other hand, the data reveal that the interactions between the [C4mim](+) and Cl(-) ions strengthen as the DMSO content of the solutions increases, and IL-rich clusters persist in this solvent even at concentrations below 10 wt%. These results provide an experimentally supported atomistic explanation of the effects that these two solvents have on some of the macroscopic properties of [C4mim]Cl. The implications that these findings could have on the design of IL-based solvent systems are briefly discussed.  相似文献   

15.
High-resolution 13C NMR studies of cellulose and cellulose oligomers dissolved in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) show that the beta-(1-->4)-linked glucose oligomers are disordered in this medium and have a conformational behavior which parallels the one observed in water, and thus, reveal that the polymer is disordered in IL solution as well.  相似文献   

16.
The solvent and rotational relaxation of Coumarin 153 (C-153) was investigated by picosecond time-resolved fluorescence spectroscopy in a room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium octyl sulfate ([C4mim][C8SO4]). This is a typical RTIL, which form micellar structure above certain concentration of the RTIL (0.031 M). Dynamic light scattering (DLS) measurements show that the average hydrodynamic diameter ( Dh) of a [C4mim][C8SO4]-water micelle is 2.8 (+/-0.2) nm. Both the solvent and rotational relaxation of C-153 are retarded in this micelle compared to the solvation time of a similar type of dye in neat water. However, the solvent relaxation in this ionic liquid surfactant is different from that of a conventional ionic surfactant. The slow component of the solvation dynamics in C8H17SO4Na or TX-100 micelle is on the nanoseconds time scale, whereas in [C4mim][C8SO4] micelle the same component is on the subnanoseconds time scale. The different molecular motions with different time scale is the main reason behind this difference in the solvation time in micelles composed of RTIL with other conventional micelles.  相似文献   

17.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

18.
The activity and stability of laccase and their kinetic mechanisms in water soluble ionic liquids (ILs): 1-butyl-3-methyl imidazolium chloride [C4mim][Cl], 1-octyl-3-methyl imidazolium chloride [C8mim][Cl], and 1-decyl-3-methyl imidazolium chloride [C10mim][Cl] were investigated. The results show that an IL concentration up to 10% is satisfactory for initial laccase activity at pH 9.0. The laccase stability was well maintained in [C4mim][Cl] IL when compared to the control. The inactivation of laccase increases with the length of the alkyl chain in the IL: [C10mim][Cl] > [C8mim][Cl] > [C4mim][Cl]. The kinetic studies in the presence of ABTS as substrate allowed calculating the Michaelis–Menten parameters. Among the ILs, [C4mim][Cl] was the suitable choice attending to laccase activity and stability. Alkyl chains in the ions of ILs have a deactivating effect on laccase, which increases strongly with the length of the alkyl chain.  相似文献   

19.
Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.  相似文献   

20.
咪唑基离子液体的物理化学性质估算及预测(英文)   总被引:1,自引:0,他引:1  
根据经验和半经验方程及空隙模型理论,可以估算及预测离子液体在298.15K的物理化学性质.本文讨论了离子液体的分子体积,密度,标准熵,晶格能,表面张力,等张比容,摩尔蒸发焓,空隙体积,空隙率和热膨胀系数.通过实验测得的三种离子液体1-乙基-3-甲基咪唑硫酸乙酯([C2mim][EtSO4)]),1-丁基-3-甲基咪唑硫酸辛酯([C4mim][OcSO4])和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])的密度和表面张力估算了它们的其它物理化学性质.由这三种离子液体的分子体积及等张比容预测了同系列中其它离子液体[Cnmim][EtSO4],[Cnmim][OcSO4]和[Cnmim][NTf2](n=1-6)的分子体积及等张比容,由此计算出它们的密度及表面张力.进而预测了它们的物理化学性质.将预测的离子液体[C4mim][NTf2]和[C2mim][OcSO4]的密度值与文献报导的实验值进行比较,其偏差在实验误差范围内.最后,将由Kabo经验方程计算的七个离子液体[C2mim][EtSO4]、[C4mim][OcSO4]、[C2mim][NTf2]、[C4mim][NTf2]、丁基三甲基铵双三氟甲磺酰亚胺盐([N4111][NTf2])、甲基三辛基铵双三氟甲磺酰亚胺盐([N8881][NTf2])和1-辛基-3-甲基吡啶四氟硼酸盐([m3opy][BF4])的摩尔蒸发焓与由Verevkin简单规则预测的摩尔蒸发焓进行比较,发现两者符合很好.因此,在缺乏密度和表面张力实验数据的情况下,可以用Verevkin简单规则来预测离子液体的摩尔蒸发焓.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号