首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resistivity of sol-gel-derived indium tin oxide (ITO) films effectively decreased with crystallization by exposure to a low fluence UV beam (10–20 mJ/cm2) from an ArF laser. The increase in temperature at the surface of the films was below 10°C under the irradiation condition. Thus, conductive and transparent ITO coatings were successfully obtained on polyethylene terephthalate and polyimide sheets using a sol-gel route assisted with an ultraviolet laser beam.  相似文献   

2.
Lee SS  Seo KW  Park JP  Kim SK  Shim IW 《Inorganic chemistry》2007,46(3):1013-1017
Copper indium disulfide (CuInS2; CIS) films were deposited on various substrates by two-stage metal-organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cu- and In/S-containing precursors without toxic H2S gas: first, a pure Cu thin film was prepared on glass or indium/tin oxide glass substrates by using a single-source precursor, bis(ethylbutyrylacetato)copper(II) or bis(ethylisobutyrylacetato)copper(II); second, on the resulting Cu film, tris(N,N-ethylbutyldithiocarbamato)indium(III) was treated to produce CIS films by a MOCVD method at 430 degrees C. In this process, their thicknesses and stoichiometries were found to be elaborately controlled on demand by adjusting the process conditions. The optical band gap of the stoichiometric CIS film was about 1.41 eV, which is in the near-optimal range for harvesting solar radiation energy.  相似文献   

3.
Titanium dioxide (TiO2) thin films have been prepared on indium doped tin oxide (ITO) glass by sol-gel dip-coating method. Properties of the films were determined as a function of heat-treatment by X-ray diffraction, scanning electron microscopy and photoelectrochemical tests. The films heat-treated at higher temperatures show better crystallinity and photoresponse. The microscopic structure on the film after heat-treatment is attributed to the incorporation of organic polymer into the precursor solution. The performance of the electrodes treated at different temperature on photoelectrocatalytic degradation of methyl orange was investigated. The effect of applied potential and the ability of the electrode to be repeatedly used in photoelectrocatalytic degradation were also evaluated.  相似文献   

4.
The work function of indium tin oxide (ITO) substrates was modified with phosphonic acid molecular films. The ITO surfaces were treated prior to functionalization with a base cleaning procedure. The film growth and coverage were quantified by contact angle goniometry and XPS. Film orientation was determined by reflection/absorption infrared spectroscopy using ITO-on-Cr substrates. The absolute work functions of nitrophenyl- and cyanophenyl-phosphonic acid films in ITO were determined by Kelvin probe measurement to be 5.60 and 5.77 eV, respectively.  相似文献   

5.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   

6.
Structural changes stimulated by ultraviolet (UV) laser irradiations of sol-gel derived inorganic oxide films were investigated. Dried gel films of TiO2, Nb2O5, Ta2O5, SrTiO3 and Pb(Zr x Ti1–x )O3 (PZT) were found to be crystallized by the laser irradiation. On the other hand, the photo-induced change in gel films of BaTiO3, LiNbO3 and LiTaO3 was not observed although the laser beams were absorbed in the films. These sol-gel films were thermally crystallized at almost the same temperature around 600–700°C except TiO2. Thus, the UV-laser-induced crystallization is not directly ascribed to a simple thermal effect with the irradiation. Photochemical properties of the cations are assumed to be important for the change in sol-gel films.  相似文献   

7.
Thin films of cadmium doped zinc oxide rod like microstructure have been synthesized by a very simple sol-gel dip coating technique. Sols were prepared from hydrated zinc oxide precursor and 2-methoxyethanol solvent with monoethanolamine as a sol stabilizer. XRD pattern confirmed the hexagonal wurtzite structure of the deposited ZnO films. Surface morphologies of the films have been studied by a scanning electron microscope and an atomic force microscope, which confirmed that the films are composed of densely packed randomly oriented nano/submicron rods with diameter in the range 300–400 nm having various lengths. We proposed a possible growth mechanism for this rodlike structure. X-ray photoelectron spectroscopic study was used to determine the binding energies and the Zn 2p3/2, Cd 3d5 and O 1s peaks in the XPS spectra were located at 1021.08 eV, 404.6 eV and 529.8 eV respectively, which confirmed the Cd doping in ZnO. Cadmium content in the film was estimated both from energy dispersive X-ray analysis and XPS measurement. Band gap energy determined from optical transmittance spectra systematically varied from 3.28 eV to 3.15 eV for 0% to 5.6% of Cd doping. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with doping percentage and this parameter for a fixed cadmium doping level decreased with increase of temperature.  相似文献   

8.
Two sets of indium oxide thin films (~150 nm) grown on quartz substrates using thermal evaporation technique were processed separately with 25‐keV Co? and N+ ions with several fluences ranging from 1.0 × 1015 to 1.0 × 1016 ions/cm2. The pristine and the ion implanted films were characterized by Rutherford backscattering spectroscopy (RBS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–Vis spectrometry. The RBS spectra reveal signature of only cobalt and nitrogen in accordance to their fluences confirming absence of any contamination arising due to ion implantation. An increase in the average crystallite size (from 13.7 to 15.3 nm) of Co? ions implanted films was confirmed by XRD. On the other hand, the films implanted with N+ ions showed a decrease in the average crystallite size from 20.1 to 13.7 nm. The XRD results were further verified by SEM micrographs. As seen in AFM images, the RMS surface roughness of the samples processed by both ion beams was found to decrease a bit (29.4 to 22.2 nm in Co? implanted samples and 24.2 to 23.3 nm in N+ implanted samples) with increasing fluence. The Tauc's plot deduced from UV–visible spectroscopy showed that the band gap decreases from 3.54 to 3.27 eV in Co? implanted films and increases from 3.38 to 3.58 eV for films implanted with N+ ions. The experimental results suggest that the modifications in structural and optical properties of indium oxide films can be controlled by optimizing the implantation conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Thin films of indium oxide were prepared by thermal reactive evaporation of a mixture of indium oxide and metallic indium. This work is an experimental study of the modifications induced by an annealing treatment, on the structural, electrical and optical properties of indium oxide (In2O3). The results show important changes of different parameters determined after annealing. The films obtained after annealing at 350 °C for 3 hours under oxygen atmosphere have a good cristallinity. These films showed a transmittance of more than 80% in the visible region and a conductivity >103 (Ω.cm)−1.  相似文献   

10.
Hydrophobic sol-gel films from methyltrimethoxysilane (MTMOS) are deposited onto glass and tin-doped indium oxide (ITO) coated glass substrates. Uniform and microporous films of ca. 200 nm thickness are obtained and investigated by scanning electron microscopy and by electrochemical techniques. From cyclic voltammograms for the oxidation of ferrocenedimethanol in aqueous 0.1 M KNO3 apparent diffusion coefficients and free volume data for processes within the film are derived and it is demonstrated that the film morphology can be controlled by the deposition timing. Two novel types of biphasic electrodes for observing liquid/liquid ion transfer reactions are introduced: (i) an ITO electrode coated with a hydrophobic sol-gel film and (ii) a hydrophobic sol-gel film on glass sputter-coated with 20 nm porous gold (porotrode). For the t-butylferrocene redox system deposited in the form of an organic liquid, very low and morphology dependent current responses are observed on modified ITO electrodes. However, the porotrode system allows biphasic electrode reactions to be driven with high efficiency and with no significant morphology effect of the hydrophobic sol-gel film. This type of nanofilm-modified electrode system will be of interest for biphasic sensor developments.  相似文献   

11.
We extend our novel low-voltage electrochemical method for oxide thin film formation from sol-gel monomers to include entrapment of organic molecules within the films. We also describe an extension of the method to titania thin films, which are obtained from titanium tetra-n-propoxide in alcoholic solutions by applying potentials in the range of +2.0 to ?1.4 V to indium tin oxide electrodes. The film thickness (ranging between 20–1000 nm) is controllable by changing either the potential or the duration of its application. We demonstrate that this electrochemical method provides a convenient way for entrapment of organic dopants within the film. Four dyes were used for that purpose: Basic Blue 41, methylene-blue, tris(2,2′-bipyridine)iron(II) and tris(2,2′-bipyridine)ruthenium(II).  相似文献   

12.
Thin films of antimony doped indium oxide on glass has been developed by sol–gel dipping process. Four different Sb: In atomic ratios, 1:99, 4:96, 7:93, 10:90 were selected for the precursors. Pressure flow curve of the precursors were Newtonian which apparently developed homogeneous films baking at 500 °C in air. The EDS study restricted to the study of the films of only two Sb: In atomic ratios, namely 7:93, 10:90 as antimony sublimes during baking. Polycrystalline nature of the nanostructured films were revealed by X-ray diffractogram and SAED analysis. Transmission electron microscopy study shows the presence of nanoclusters of maximum average size, ~11 nm. The band gap evaluation from the absorption spectra suggested the presence of bulk indium oxide, nanoclustered indium oxide and antimony doped indium oxide. Presence of Sb(V) in the system was evidenced from the characteristic absorption spectra in the UV region. Visible transmissivity and electrical resistivity suggested the films to be prospective transparent conducting oxide material. The photoluminescence study exhibited the characteristic emissions for defect centres.  相似文献   

13.
Oxygen photoanodes formed by reactive sputtering of iron oxide onto conducting indium tin oxide (ITO) substrates held at 350 ° C have been investigated by conventional photoelectrochemical, impedance, XPS and auger spectroscopic methods. This fabrication procedure leads to films containing 8 to 20 atomic % indium in the front portion of the film, increasing to much higher values near the ITO interface (back portion of the film). Two interesting effects are observed with the thin-film iron oxide formed in this way. The first is that the as formed films must be vacuum annealed before an appreciable dc photoanodic response is observed. Secondly, films 250 nm thick display the property of giving about double the quantum yield for back face, than for front face, illumination over the spin and parity forbidden transition centered at 535 nm. On correcting for transmission and reflection losses, the resulting true quantum efficiencies satisfy the same inequality, a result that can only be accounted for by a higher ( > 2 × ) primary quantum efficiency for the back, versus the front portion of the film. As these films show substantially higher quantum efficiencies than do indium free films of the same thickness, it is concluded that the indium in the films is responsible for the increase in primary quantum efficiency. This result is discussed in terms of a localized states model for α-Fe2O3.  相似文献   

14.
Heterojunctions were constructed, consisting of a 50 nm thick sol-gel derived titanium dioxide (TiO2) layer and a 500 nm thick thermally evaporated chloroaluminium phthalocyanine (ClAlPc) film sandwiched between an indium tin oxide (ITO) base and a gold counter electrode. It is found from short circuit current measurements that TiO2 films can be sensitised to wavelengths outside their intrinsic sensitivity by using phthalocyanine dyes. Photoelectrical measurements were performed on the devices using a solar simulator at six different intensities varying from 0.18 to 2.0 mW/cm2. The overall conversion efficiency of the cells was found to reach maximum at the intensity of light of 1.12 mW/cm2 from the solar simulator.  相似文献   

15.
Nanocrystalline cupric oxide thin films were prepared using the sol-gel method. Three sols with different pH were performed in order to evaluate the pH effect on the morphology and optical properties of the films. XRD pattern confirmed the nanocrystalline monoclinic CuO phase formation. The influences of pH on surface morphology of films were investigated by scanning electron microscopy (SEM). It was observed that grains size increases by increasing the pH of the sol. UV-Vis spectrum measurement showed low transparency of the films in the visible region. Optical constants such as extinction coefficient, refractive index and optical band gap were evaluated from these spectra by using the Pointwise Unconstrained Minimization Approach (PUMA). The band gap of the films varies from 2.20 to 1.98 eV for various pH of sol.  相似文献   

16.
Durrani SM  Khawaja EE  Al-Kuhaili MF 《Talanta》2005,65(5):1162-1167
Undoped thin films of tin oxide and those doped with indium oxide and nickel oxides were deposited by electron beam evaporation. The effects of the film thickness and preparation conditions (films prepared with or without the presence of oxygen environment during deposition) on the optical and carbon monoxide sensing properties of the films were studied. The films were characterized using X-ray diffraction and X-ray photoelectron spectroscopy and optical spectroscopy techniques. All the films were found to be amorphous. It was found that the sensitivity of the films to CO increased with the thickness and the porosity of the films. It was found that their selectivity to CO gas relative to CO2 and SO2 gases could be improved upon doping the films with indium (or nickel) oxide.  相似文献   

17.
The formation process of a ceramic (indium oxide) thin film (thickness: approximately 20 nm to several microns) was investigated by thermal analyses. Thermal changes of an organic precursor, indium(III) 2-ethylhexanoate, dip-coated on a glass substrate was successfully detected by DSC in air. Exothermic phenomena were observed at marked lower temperatures for the thin films than for the bulk material; thinner films had slightly lower peak temperatures. The reaction mechanism is discussed with reference to mass spectra of the evolved gases.  相似文献   

18.
First report on the preparation of well-dispersed, indium(III) oxide (In2O3) nanoparticles with 22–35?nm size by polymer thermolysis is presented. Indium–poly(vinyl alcohol) (PVA) coordination polymer films were prepared by ‘solution casting technique’ from the homogeneous aqueous solution of coordination polymer prepared using PVA and indium(III) nitrate as starting materials; subsequently the films were calcined at 550?°C to yield In2O3 nanoparticles. Both indium–PVA coordination polymer that served as the precursor and the titled nanoparticles were characterized by Fourier transform-infrared spectroscopy, photoluminescence (PL), powder X-ray diffraction (XRD), transmission electron microscopy, and thermal analysis. Room temperature PL spectra of the prepared indium oxide nanoparticles showed intense blue emissions around 360, 410 and 430?nm, characteristic of indium oxide nanoparticles due to oxygen vacancies. The lower energy PL emission decreases with an increase of indium(III) content in the precursor. The size of the nanoparticles calculated from line broadening of XRD pattern (cubic; JCPDS: 06-0416) was found to be around 24?nm. The average particle size of the synthesized nanoparticles increased with metal ion content in the precursor coordination polymer.  相似文献   

19.
Cationic polymerization is induced at the gas-solid interface by hyperthermal organic cations coincident on a surface with a thermal beam of organic monomers. This process, termed surface polymerization by ion-assisted deposition (SPIAD), produces films that maintain the chemical structure of the monomer. A polythiophene film is produced here by SPIAD with 100 eV thiophene ions and terthiophene monomers coincident on Si and indium tin oxide (ITO) substrates held under vacuum. X-ray photoelectron spectroscopy observes enhancement in film growth for SPIAD compared with either thiophene ion or terthiophene exposure alone. Polythiophene films grown by both mass-selected and nonmass-selected ions with coincident terthiophene dosing both display similar fluorescence intensities at two wavelengths characteristic of emission from films of the terthiophene monomer. Raman spectra of films from nonmass-selected ions display several vibrations also observed in terthiophene films. Ions therefore play a critical role in film growth from nonmass-selected ions, in addition to any radical or photochemically driven processes that may also occur.  相似文献   

20.
Highly pure aluminum specimens (99.99%) after electropolishing and DC-etching were covered with SiO2 films by electrophoretic sol-gel coating and were anodized in neutral boric acid/borate solutions. Time-variations in cell voltage during electrophoretic sol-gel coating and in anode potential during anodizing were monitored. Structure and dielectric properties of the anodic oxide films were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and electrochemical impedance spectroscopy (EIS). It was found that electrophoretic sol-gel coating forms uniform SiO2 films on the surface of both electropolished and DC-etched specimens. Anodizing of specimens after electrophoretic coating lead to the formation of anodic oxide films consisting of two layers: an inner alumina layer and an outer Al–Si composite oxide layer. The anodic oxide films formed, thus, had slightly higher capacitances than those formed on aluminum without any coating. Higher heating temperatures after electrophoretic deposition caused the increase in capacitance of anodic oxide films more effectively. Anodizing in a boric acid solution after SiO2 coating on DC-etched foil allowed the anode potential to reach a value higher than 1,000 V, resulting in 39% higher capacitances than those on specimens without SiO2 film. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号