首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an Hg-free lamp using phosphor, the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a med...  相似文献   

2.
掺铥硫氧化钇的特殊余辉性质   总被引:12,自引:2,他引:10  
迄今为止,稀土长余辉磷光体已见文献或专利公开报道的激活离子主要有适于紫外光激发的三价铈离子(Ce3+)和三价镨离子(Pr3+)、适于可见光激发的铕离子(Eu3+和Eu2+)及钐离子(Sm3+,Sm2+),尚未涉及到铥离子Tm3+或Tm2+.我们在Tm3+离子激活的硫氧化钇体系Y2O2S:Tm3+中发现了长余辉荧光特性.特别是在该磷光体中还发现了一种非常特殊的余辉现象.  相似文献   

3.
纳米稀土磷酸盐红色荧光粉的合成及性能   总被引:6,自引:0,他引:6  
以Gd,Y和Eu的硝酸盐与(NH4)2HPO4为原料,采用室温固相反应合成出前驱体,再经过900℃煅烧2h得到(Gd,Y,Eu)PO4纳米荧光粉,运用TG-DTA、XRD、TEM、固体荧光等技术,研究了荧光粉的形成过程、晶体尺寸、形貌及发光性能.结果表明:荧光粉属于单斜晶系,独居石结构的正磷酸盐,空间群为P21/n,平均粒径为60 nm,分散性好,有较高的热稳定性.在396 nm紫外光激发下,纳米荧光粉发出Eu3+的特征红色荧光,发射主峰在613nm,归属于Eu3+离子的5D0→7F2跃迁,该纳米粉体是一种性能优良的荧光材料.  相似文献   

4.
以SnCl2•2H2O、SbCl3为原料, 通过溶胶-凝胶法制备SnO2:Sb干凝胶. 利用干凝胶氧化过程中的部分升华产物对新制的ZnS:Mn荧光粉进行了表面处理. 在固定氧气流量和氧化时间的条件下, 考察了SnO2:Sb干凝胶与ZnS:Mn荧光粉的质量比和氧化温度对处理后荧光粉电阻率的影响. 当干凝胶粉与荧光粉的质量比为3.0, 氧化温度为500 ℃处理后荧光粉的电阻率明显下降. 对处理后的荧光粉进行了室温光致荧光(PL)光谱、X射线衍射(XRD)以及透射电镜(TEM)分析. 结果表明对荧光粉进行表面处理没有改变荧光粉的光致发光性质和晶体结构.  相似文献   

5.
As an Hg-free lamp using phosphor,the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum uitraviolet(VUV) excitation were investigated.The VUV photolumineseent intensity of Y2O2S:Eu3+ was weak,however,considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems.Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a medium and effectively performs the energy transfer process: Y3+-O2→Bi3+→Eu3+,while the intense emission band at 172 nm is attributed to the absorption of the characteristic 1So-1P1 transition of Bi3+ and the direct energy transfer from Bi3+ to Eu3+.The Y2O2S:Eu3+,Bi3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu3+.Thus,the Y2O2S:Eu3+,Bi3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

6.
采用高温固相法合成了Ba(Y1-0.5x-yAly)2S4:xHo3+系列荧光粉。在465 nm蓝光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于492、543和661 nm处,分别对应于Ho3+的5F3→5I8,(5S2,5F4)→5I8和5F5→5I8跃迁发射。研究了Ho3+和Al3+掺杂量对BaY2S4:Ho3+发光性能的影响。结果表明,随着Ho3+掺杂量的逐渐增大,荧光粉的发光颜色由绿色逐渐向红色转变;适量Al3+取代Y3+可以提高BaY2S4:Ho3+荧光粉的发光强度。荧光粉Ba(Y0.665Al0.3)2S4:0.07Ho3+在蓝光(465 nm)激发下发射黄光,是一种潜在的白光LED用黄色荧光粉。  相似文献   

7.
Eu(III)-doped Y(2)O(3) nanocrystals are prepared by microwave synthetic methods as spherical 6.4 ± 1.5 nm nanocrystals with a cubic crystal structure. The surface of the nanocrystal is passivated by acetylacetonate (acac) and HDA on the Y exposed facet of the nanocrystal. The presence of acac on the nanocrystal surface gives rise to a strong S(0) → S(1) (π → π*, acac) and acac → Ln(3+) ligand to metal charge transfer (LMCT) transitions at 270 and 370 nm, respectively, in the Eu:Y(2)O(3) nanocrystal. Excitation into the S(0) → S(1) (π → π*) or acac → Ln(3+) LMCT transition leads to the production of white light emission arising from efficient intramolecular energy transfer to the Y(2)O(3) oxygen vacancies and the Eu(III) Judd-Ofelt f-f transitions. The acac passivant is thermally stable below 400 °C, and its presence is evidenced by UV-vis absorption, FT-IR, and NMR measurements. The presence of the low-lying acac levels allows UV LED pumping of the solid phosphor, leading to high quantum efficiency (~19%) when pumped at 370 nm, high-quality white light color rendering (CIE coordinates 0.33 and 0.35), a high scotopic-to-photopic ratio (S/P = 2.21), and thermal stability. In a LED lighting package luminosities of 100 lm W(-1) were obtained, which are competitive with current commercial lighting technology. The use of the passivant to funnel energy to the lanthanide emitter via a molecular antenna effect represents a new paradigm for designing phosphors for LED-pumped white light.  相似文献   

8.
Yttrium oxysulfide upconverting phosphor nanoparticles, doped with Yb as a sensitizer and Er (or Ho, Tm) as an activator, have been prepared via a solid-gas reaction using precursor oxalate particles obtained in an emulsion liquid membrane (ELM, water-in-oil-in-water (W/O/W) emulsion) system. The resulting Y(2)O(2)S:Yb,Er particles, mainly smaller than 50 nm in diameter, demonstrated green upconversion emission under infrared excitation (lambdaex = 980 nm) via a two-photon process. Distinct green and blue upconversion emission were also demonstrated under the same infrared excitation from Y(2)O(2)S:Yb,Ho and Y(2)O(2)S:Yb,Tm nanoparticles, respectively. These upconverting phosphor nanoparticles, together with Y(2)O(3):Yb,Er infrared-to-red upconverting phosphor particles, with different emission under the same infrared excitation may be applied to the luminescent reporter materials for the detection of the targeted analyte in multiplexed assays.  相似文献   

9.
The influence of key sol-gel synthesis parameters on the pore structure of microporous silica xerogels was investigated. The silica xerogels were prepared using an acid-catalyzed aqueous sol-gel process, with tetraethoxysilane (TEOS) as the silicon-containing precursor. At high H2O : TEOS ratios, sols synthesized at pH 2–3 yielded minimum values of mean micropore diameter and micropore volume. Analysis of the resulting Type I nitrogen adsorption isotherms and the equilibrium adsorption of N(C4F9)3 indicated micropore diameters for these xerogels of less than approximately 10 Å.Xerogel micropore volumes corresponding to sols prepared at pH 3 and an H2O : TEOS ratio of r = 83 were consistent with nearly close packing of silica spheres in the xerogel. Xerogel microstructure was only weakly dependent upon H2O : TEOS ratio during sol synthesis for r > 10. Xerogel micropore volume increased rapidly with sol aging time during an initial induction period of particle formation. However, the xerogel microstructure changed only slowly with time after this initial period, suggesting potential processing advantages for the particulate sol-gel route to porous silica materials.Surface adsorption properties of the silica xerogels were investigated at ambient temperature using N2, SF6, and CO2. CO2 adsorbed most strongly, SF6 also showed measurable adsorption, and N2 adsorption was nearly zero. These results were consistent with the surface transport of CO2, and to a lesser extent SF6, observed in gas permeation studies performed through thin membrane films cast from similarly prepared silica sols.  相似文献   

10.
采用高温固相法合成Sr2-mMg1-nSi2O7∶mTb3+,nLi+(m=0.03~0.50,n=m)系列荧光粉。使用X射线衍射仪和荧光光谱仪对样品的物相和发光性质进行了表征。在377 nm紫外光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于490 nm,542 nm,590 nm和613 nm处,分别对应于Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射。调节Tb3+离子掺杂浓度,可实现荧光粉的发光颜色从蓝到白、黄、绿的可调发射;名义组成为Sr1.95Mg0.95Si2O7∶0.05Tb3+,0.05Li+的荧光粉在紫外光(377 nm)激发下发白光,其色坐标(0.322,0.317)接近纯白光(0.33,0.33),是一种潜在的LED用单基质白光荧光粉。  相似文献   

11.
Mullite and mullite/Al2O3 precursor sols have been developed for the deposition of oxidation barrier coatings on carbon fibre reinforced composites using a combination of sol–gel synthesis and electrophoresis.The sols were synthesised by controlled hydrolysis and condensation of TEOS (tetraethoxysilane) and Al(OBus)3 (aluminium tri-sec-butylate). The main objective was the definition of synthesis conditions which yield sols suitable for the electrophoretic deposition (EPD). Measurements of the Electrokinetic Sonic Amplitude were used to investigate the electrokinetic properties of the sols in the as-prepared state and depending on the later addition of H2O. 29Si CP/MAS NMR spectra of dried precursor samples were recorded to study the homogeneity of Al/Si mixture. The progress of crystallisation with increasing temperature of heat treatment was examined by XRD. Oxidation protection coatings on C/C–SiC composites were prepared by EPD.Whereas a low H2O to TEOS ratio during the sol synthesis was advantageous for a low mullite formation temperature, a high H2O to TEOS ratio was necessary to enable the EPD. The synthesis of a sol with a low H2O to TEOS ratio in the first step and the later modification of this sol by the addition of water was a successful method to combine the required electrokinetic properties and mullitisation temperatures below 1200 °C.  相似文献   

12.
Xia Z  Wang X  Wang Y  Liao L  Jing X 《Inorganic chemistry》2011,50(20):10134-10142
A new family of chloroborate compounds, which was investigated from the viewpoint of rare earth ion activated phosphor materials, have been synthesized by a conventional high temperature solid-state reaction. The crystal structure and thermally stable luminescence of chloroborate phosphors Ba(2)Ln(BO(3))(2)Cl:Eu(2+) (Ln = Y, Gd, and Lu) have been reported in this paper. X-ray diffraction studies verify the successful isomorphic substitution for Ln(3+) sites in Ba(2)Ln(BO(3))(2)Cl by other smaller trivalent rare earth ions, such as Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. The detailed structure information for Ba(2)Ln(BO(3))(2)Cl (Ln = Y, Gd, and Lu) by Rietveld analysis reveals that they all crystallize in a monoclinic P2(1)/m space group. These compounds display interesting and tunable photoluminescence (PL) properties after Eu(2+)-doping. Ba(2)Ln(BO(3))(2)Cl:Eu(2+) phosphors exhibit bluish-green/greenish-yellow light with peak wavelengths at 526, 548, and 511 nm under 365 UV light excitation for Ba(2)Y(BO(3))(2)Cl:Eu(2+), Ba(2)Gd(BO(3))(2)Cl:Eu(2+), and Ba(2)Lu(BO(3))(2)Cl:Eu(2+), respectively. Furthermore, they possess a high thermal quenching temperature. With the increase of temperature, the emission bands show blue shifts with broadening bandwidths and slightly decreasing emission intensities. It is expected that this series of chloroborate phosphors can be used in white-light UV-LEDs as a good wavelength-conversion phosphor.  相似文献   

13.
Zou L  Xiang X  Wei M  Li F  Evans DG 《Inorganic chemistry》2008,47(4):1361-1369
The synthesis of single-crystalline ZnGa 2O 4 spinel phosphor with intense ultraviolet-emitting properties through a novel single-source inorganic precursor route is reported. This synthetic approach involves the calcination of a Zn-Ga layered double hydroxide precursor followed by selective leaching of the self-generated zinc oxide. Material characterization has been presented by chemical analysis, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, extended X-ray absorption fine structure analysis, UV-vis, and photoluminescence measurements. The results indicate that a single-crystalline ZnGa 2O 4 spinel with an average particle size of around 150 nm has been obtained at a lower calcination temperature and shorter calcination time compared with that with the high-temperature solid-state reaction method, based on the fact that the large amount of highly dispersed ZnO particles generated during the high-temperature calcination of the single-source inorganic precursor has a remarkable segregation and inhibition effect on the growth of ZnGa 2O 4 spinel. Furthermore, it has been confirmed that that Ga (3+) ions locate not only on the octahedral sites but also on the tetrahedral sites in the matrix of the ZnGa 2O 4 spinel structure, and the Ga-O coordination environment has a great influence on the photoluminescence of ZnGa 2O 4 phosphors.  相似文献   

14.
Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu2+ phosphors. The obtained BAM:Eu2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu2+ phosphor prepared by citrate-gel method, spherical BAM:Eu2+ phosphor particles showed a higher emission intensity.  相似文献   

15.
Trivalent rare-earth (RE) ions (Eu(3+), Tb(3+) and Sm(3+)) activated multicolor emitting SrY(2)O(4) phosphors were synthesized by a sol-gel process. The structural and morphological studies were performed by the measurements of X-ray diffraction profiles and scanning electron microscope (SEM) images. The pure phase of SrY(2)O(4) appeared after annealing at 1300 °C and the doping of RE ions did not show any effect on the structural properties. From the SEM images, the closely packed particles were observed due to the roughness of each particle tip. The photoluminescence (PL) analysis of individual RE ions activated SrY(2)O(4) phosphors exhibits excellent emission properties in their respective regions. The Eu(3+) co-activated SrY(2)O(4):Tb(3+) phosphor creates different emissions by controlling the energy transfer from Tb(3+) to Eu(3+) ions. Based on the excitation wavelengths, multiple (green, orange and white) emissions were obtained by Sm(3+) ions co-activated with SrY(2)O(4):Tb(3+) phosphors. The decay measurements were carried out for analyzing the energy transfer efficiency and the possible ways of energy transfer from donor to acceptor. The cathodoluminescence properties of these phosphors show similar behavior as PL properties except the energy transfer process. The obtained results indicated that the energy transfer process was quite opposite to the PL properties. The calculated CIE chromaticity coordinates of RE ions activated SrY(2)O(4) phosphors confirmed the red, green, orange and white emissions.  相似文献   

16.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   

17.
采用高温固相法合成了Ca3Gd2WO9/xSm3+系列红色荧光材料。研究了合成样品的最佳烧结温度和时间分别为1 100℃和3 h,讨论了Sm3+的掺杂浓度对Ca3Gd2WO9/x Sm3+发光强度的影响,当x为1.0%(摩尔分数)时,样品的相对发光强度达到最大值。测量了荧光粉的X射线衍射谱和荧光光谱。结果表明,该样品能够被434 nm的可见光有效激发,主发射峰位593 nm附近,对应于Sm3+的4G5/2→6H7/2跃迁,可作为白光发光LED的红色发光材料。  相似文献   

18.
The photoluminescence (PL) studies of powder phosphors are under rigorous study in view of the applications they have in the field of technology. Different methods are available for the preparation of rare earth ions doped in different host environment of powder phosphors. In the present work, a novel route known as sol-gel technique is employed to prepare spinel phosphor MgAl(1.8)Y(0.2-x)O(4):Eu(x) (x = 2-6 mol%). Then the studies have been carried out to optimize the dopant concentration in the host lattice with the help of photoluminescence spectra. These phosphors have displayed bright red color under UV source. The emission intensities were determined and the relative fluorescence intensities have been estimated. The richness of the red color has been verified by determining their chromaticity coordinates (X, Y) from the CIE standard charts. With the help of XRD, electron spin resonance (ESR), and photo-acoustic (PA) spectra of the samples prepared are also used for the confirmity of the host and analyzing of the data.  相似文献   

19.
YBO3:Eu荧光粉的水热法制备及形貌控制   总被引:5,自引:0,他引:5  
用水热法在低于300℃成功地制备出具有不同形貌的YBO3:Eu3+荧光粉,其反应温度比固相反应了约800℃.研究了初始原料、pH值、反应温度、反应溶剂和催化剂等条件对目的产物形貌及粒度的,得到了具有Vaterite结构、粒度分布均匀的球形荧光粉的最佳合成工艺.在254nm激发下,水热法的球形Y0.95Eu0.05BO3荧光粉最强发射峰位于598nm处,属于Eu3+的5D0→7F1的跃迁,是固相反应所品的1.5倍.这些结果表明,在PDP和荧光灯等显示和照明用荧光粉的制备中水热法具有潜在的应用.  相似文献   

20.
采用共沉淀、溶胶-凝胶和固相反应法制备了GdAlO3:Er3+,Yb3+荧光粉.借助X射线衍射、扫描电子显微镜、傅里叶变换红外光谱、N2-吸附、吸收光谱和荧光光谱等手段研究了不同方法制备的GdAlO3:Er3+,Yb3+荧光粉结构、形貌、表面基团和光吸收及上转换发光性能.结果表明:用共沉淀法比固相反应法和溶胶-凝胶法可以在更温和的条件下制得纯相GdAlO3:Er3+,Yb3+荧光粉,用共沉淀法和溶胶-凝胶法制备的GdAlO3:Er3+,Yb3+荧光粉颗粒都在纳米尺寸,溶胶-凝胶法制得的样品存在相对严重的颗粒团聚现象,而用固相反应法制备的荧光粉为微米级颗粒.GdAlO3:Er3+,Yb3+荧光粉在980 nm激发的上转换发射光谱包含波长为524和546 nm的绿光与659 nm的红光,且三种方法制备的样品绿光发射强度都显著高于红光.不同方法制备的荧光粉上转换发光强度和红光/绿光强度比相差较大,共沉淀法制备的样品上转换发光强度要显著高于固相法以及溶胶-凝胶法制备的样品,而溶胶-凝胶法制备的样品发光中红光/绿光相对强度比最高.红外光谱显示,不同方法制备的GdAlO3:Er3+,Yb3+荧光粉表面OH-、CO32-及CO2官能团含量不同,溶胶-凝胶法制备的样品要明显高些.基于红外光谱、不同Er3+和Yb3+离子掺杂浓度及不同激光功率上转换发光的结果,对Er3+和Yb3+之间的能量传递过程及不同方法制备荧光粉的上转换发光性能进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号