首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Learning how native RNA conformations can be stabilized relative to unfolded states is an important objective, for both understanding natural RNAs and improving the design of artificial functional RNAs. Here we show that covalently attached double-stranded DNA constraints (ca. 14 base pairs in length) can significantly stabilize the native conformation of an RNA molecule. Using the P4-P6 domain of the Tetrahymena group I intron as the test system, we identified pairs of RNA sites where attaching a DNA duplex is predicted to be structurally compatible with only the folded state of the RNA. The DNA-constrained RNAs were synthesized and shown by nondenaturing polyacrylamide gel electrophoresis (native PAGE) to have substantial decreases in their Mg2+ midpoints ([Mg2+]1/2 values). These changes are equivalent to free energy stabilizations as large as DeltaDeltaGdegrees = -2.5 kcal/mol, which is approximately 14% of the total tertiary folding energy. For comparison, the sole modification of P4-P6 previously reported to stabilize this RNA is a single-nucleotide deletion (DeltaC209) that provides only 1.1 kcal/mol of stabilization. Our findings indicate that nature has not completely optimized P4-P6 RNA folding. Furthermore, the DNA constraints are designed not to interact directly and extensively with the RNA, but rather more indirectly to modulate the relative stabilities of folded and unfolded RNA states. The successful implementation of this strategy to further stabilize a natively folded RNA conformation suggests an important element of modularity in stabilization of RNA structure, with implications for how nature might use other molecules such as proteins to stabilize specific RNA conformations.  相似文献   

2.
All structured biological macromolecules must overcome the thermodynamic folding problem to populate a unique functional state among a vast ensemble of unfolded and alternate conformations. The exploration of cooperativity in protein folding has helped reveal and distinguish the underlying mechanistic solutions to this folding problem. Analogous dissections of RNA tertiary stability remain elusive, however, despite the central biological importance of folded RNA molecules and the potential to reveal fundamental properties of structured macromolecules via comparisons of protein and RNA folding. We report a direct quantitative measure of tertiary contact cooperativity in a folded RNA. We precisely measured the stability of an independently folding P4-P6 domain from the Tetrahymena thermophila group I intron by single molecule fluorescence resonance energy transfer (smFRET). Using wild-type and mutant RNAs, we found that cooperativity between the two tertiary contacts enhances P4-P6 stability by 3.2 +/- 0.2 kcal/mol.  相似文献   

3.
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry yields quantitative RNA secondary and tertiary structure information at single nucleotide resolution. SHAPE takes advantage of the discovery that the nucleophilic reactivity of the ribose 2'-hydroxyl group is modulated by local nucleotide flexibility in the RNA backbone. Flexible nucleotides are reactive toward hydroxyl-selective electrophiles, whereas constrained nucleotides are unreactive. Initial versions of SHAPE chemistry, which employ isatoic anhydride derivatives that react on the minute time scale, are emerging as the ideal technology for monitoring equilibrium structures of RNA in a wide variety of biological environments. Here, we extend SHAPE chemistry to a benzoyl cyanide scaffold to make possible facile time-resolved kinetic studies of RNA in approximately 1 s snapshots. We then use SHAPE chemistry to follow the time-dependent folding of an RNase P specificity domain RNA. Tertiary interactions form in two distinct steps with local tertiary contacts forming an order of magnitude faster than long-range interactions. Rate-determining tertiary folding requires minutes despite that no non-native interactions must be disrupted to form the native structure. Instead, overall folding is limited by simultaneous formation of interactions approximately 55 A distant in the RNA. Time-resolved SHAPE holds broad potential for understanding structural biogenesis and the conformational interconversions essential to the functions of complex RNA molecules at single nucleotide resolution.  相似文献   

4.
The ability of fluorine in a C-F bond to act as?a hydrogen bond acceptor is controversial. To test such ability in complex RNA macromolecules, we have replaced native 2'-OH groups with 2'-F and 2'-H groups in two related systems, the Tetrahymena group I ribozyme and the ΔC209 P4-P6 RNA domain. In three cases the introduced 2'-F mimics the native 2'-OH group, suggesting that the fluorine atom can accept a hydrogen bond. In each of these cases the native hydroxyl group interacts with a purine exocyclic amine. Our results give insight about the properties of organofluorine and suggest a possible general biochemical signature for tertiary interactions between 2'-hydroxyl groups and exocyclic amino groups within RNA.  相似文献   

5.
In vitro selection was used to identify deoxyribozymes that ligate two RNA substrates. In the ligation reaction, a 2'-5' RNA phosphodiester linkage is created from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. The new Mg(2+)-dependent deoxyribozymes provide 50-60% yield of ligated RNA in overnight incubations at pH 7.5 and 37 degrees C, and they afford 40-50% yield in 1 h at pH 9.0 and 37 degrees C. Various RNA substrate sequences may be joined by simple Watson-Crick covaration of the DNA binding arms that interact with the two RNA substrates. The current deoxyribozymes have some RNA substrate sequence requirements at the nucleotides immediately surrounding the ligation junction (either UAUA GGAA or UAUN GGAA, where the arrow denotes the ligation site and N equals any nucleotide). One of the new deoxyribozymes was used to prepare by ligation the Tetrahymena group I intron RNA P4-P6 domain, a representative structured RNA. Nondenaturing gel electrophoresis revealed that a 2'-5' linkage between nucleotides A233 and G234 of P4-P6 does not disrupt its Mg(2+)-dependent folding (DeltaDeltaG degrees ' < 0.2 kcal/mol). This demonstrates that a 2'-5' linkage does not necessarily interfere with structure in a folded RNA. Therefore, these non-native linkages may be acceptable in modified RNAs when structure/function relationships are investigated. Deoxyribozymes that ligate RNA should be particularly useful for preparing site-specifically modified RNAs for studies of RNA structure, folding, and catalysis.  相似文献   

6.
A precise tertiary structure must be adopted to allow the function of many RNAs in cells. Accordingly, increasing resources have been devoted to the elucidation of RNA structures and the folding of RNAs. 2-Aminopurine (2AP), a fluorescent nucleobase analogue, can be substituted in strategic positions of DNA or RNA molecules to act as site-specific probe to monitor folding and folding dynamics of nucleic acids. Recent studies further demonstrated the potential of 2AP modifications in the assessment of folding kinetics during ligand-induced secondary and tertiary RNA structure rearrangements. However, an efficient way to unambiguously identify reliable positions for 2AP sensors is as yet unavailable and would represent a major asset, especially in the absence of crystallographic or NMR structural data for a target molecule. We report evidence of a novel and direct correlation between the 2'-OH flexibility of nucleotides, observed by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing and the fluorescence response following nucleotide substitutions by 2AP. This correlation leads to a straightforward method, using SHAPE probing with benzoyl cyanide, to select appropriate nucleotide sites for 2AP substitution. This clear correlation is presented for three model RNAs of biological significance: the SAM-II, adenine (addA), and preQ(1) class II (preQ(1)cII) riboswitches.  相似文献   

7.
8.
The folding and catalytic function of RNA molecules depend on their interactions with divalent metal ions, such as magnesium. As with every molecular process, the most basic knowledge required for understanding the close relationship of an RNA with its metal ions is the stoichiometry of the interaction. Unfortunately, inventories of the numbers of divalent ions associated with unfolded and folded RNA states have been unattainable. A common approach has been to interpret Hill coefficients fit to folding equilibria as the number of metal ions bound upon folding. However, this approach is vitiated by the presence of diffusely associated divalent ions in a dynamic ion atmosphere and by the likelihood of multiple transitions along a folding pathway. We demonstrate that the use of molar concentrations of background monovalent salt can alleviate these complications. These simplifying solution conditions allow a precise determination of the stoichiometry of the magnesium ions involved in folding the metal ion core of the P4-P6 domain of the Tetrahymena group I ribozyme. Hill analysis of hydroxyl radical footprinting data suggests that the P4-P6 RNA core folds cooperatively upon the association of two metal ions. This unexpectedly small stoichiometry is strongly supported by counting magnesium ions associated with the P4-P6 RNA via fluorescence titration and atomic emission spectroscopy. By pinpointing the metal ion stoichiometry, these measurements provide a critical but previously missing step in the thermodynamic dissection of the coupling between metal ion binding and RNA folding.  相似文献   

9.
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.  相似文献   

10.
Erat MC  Sigel RK 《Inorganic chemistry》2007,46(26):11224-11234
Group II introns are large metallo-ribozymes that use divalent metal ions in folding and catalysis. The 3'-terminal domain 6 (D6) contains a conserved adenosine whose 2'-OH group acts as the nucleophile in the first splicing step. In the hierarchy of folding, D6 binds last into the active site. In order to investigate and understand the folding process to the catalytically active intron structure, it is important to know the individual binding affinities of Mg2+ ions to D6. We recently studied the solution structure of a 27 nucleotide long D6 (D6-27) from the mitochondrial yeast group II intron Sc.ai5gamma, also identifying five Mg2+ binding sites including the one at the 5'-terminal phosphate residues. Mg2+ coordination to the 5'-terminal di- and triphosphate groups is strongest (e.g., log KA,TP = 4.55 +/- 0.10) and is evaluated here in detail for the first time. The other four binding sites within D6-27 are filled simultaneously (e.g., log KA,BR = 2.38 +/- 0.06) and thus compete for the free Mg2+ ions in solution, having a distinct influence on the individual affinities of the various sites. For the first time, we take this competition into account to obtain the intrinsic binding constants, describing a method that is generally applicable. Our data illustrates that any RNA molecule undergoing tertiary contacts to a second RNA molecule first needs to be loaded evenly and specifically with metal ions to compensate for the repulsion between the negatively charged RNA molecules.  相似文献   

11.
The functions of most RNA molecules are critically dependent on the distinct local dynamics that characterize secondary structure and tertiary interactions and on structural changes that occur upon binding by proteins and small molecule ligands. Measurements of RNA dynamics at nucleotide resolution set the foundation for understanding the roles of individual residues in folding, catalysis, and ligand recognition. In favorable cases, local order in small RNAs can be quantitatively analyzed by NMR in terms of a generalized order parameter, S2. Alternatively, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry measures local nucleotide flexibility in RNAs of any size using structure-sensitive reagents that acylate the 2'-hydroxyl position. In this work, we compare per-residue RNA dynamics, analyzed by both S2 and SHAPE, for three RNAs: the HIV-1 TAR element, the U1A protein binding site, and the Tetrahymena telomerase stem loop 4. We find a very strong correlation between the two measurements: nucleotides with high SHAPE reactivities consistently have low S2 values. We conclude that SHAPE chemistry quantitatively reports local nucleotide dynamics and can be used with confidence to analyze dynamics in large RNAs, RNA-protein complexes, and RNAs in vivo.  相似文献   

12.
RNA molecules participate in many important biological processes, and they need to fold into well-defined secondary and tertiary structures to realize their functions. Like the well-known protein folding problem, there is also an RNA folding problem. The folding problem includes two aspects: structure prediction and folding mechanism. Although the former has been widely studied, the latter is still not well understood. Here we present a deep reinforcement learning algorithms 2dRNA-Fold to study the fastest folding paths of RNA secondary structure. 2dRNA-Fold uses a neural network combined with Monte Carlo tree search to select residue pairing step by step according to a given RNA sequence until the final secondary structure is formed. We apply 2dRNA-Fold to several short RNA molecules and one longer RNA 1Y26 and find that their fastest folding paths show some interesting features. 2dRNA-Fold is further trained using a set of RNA molecules from the dataset bpRNA and is used to predict RNA secondary structure. Since in 2dRNA-Fold the scoring to determine next step is based on possible base pairings, the learned or predicted fastest folding path may not agree with the actual folding paths determined by free energy according to physical laws.  相似文献   

13.
Flexibility in pseudorotaxanes and interlocked molecules that rely on interactions between π-donor-acceptor subunits provides access to folded structures reminiscent of the tertiary structure of proteins. While they have been described before, only now have we been able to quantify one such tertiary structure by making use of pseudorotaxanes designed for the purpose. Here, the enhanced stability of a pseudorotaxane inside a folded structure is measured to be ΔG = ca. 0.5 kcal mol(-1). The tertiary structure is stabilized by a charge-transfer interaction between a tetrathiafulvalene-based π-donor that can situate alongside a π-accepting paraquat-based macrocycle by folding of a flexible linker. At room temperature, it was estimated that 70% of the pseudorotaxanes examined here exist in their folded state. This quantitative information is critical for the creation of interlocked molecular machines that have predictable energetics and structures and for revealing a complexity approaching biological molecules.  相似文献   

14.
RNA molecules undergo local conformational dynamics on timescales spanning picoseconds to minutes. Slower local motions have the greater potential to govern RNA folding, ligand recognition, and ribonucleoprotein assembly reactions but are difficult to detect in large RNAs with complex structures. RNA SHAPE chemistry employs acylation of the ribose 2'-hydroxyl position to measure local nucleotide flexibility in RNA and is well-characterized by a mechanism in which each nucleotide samples unreactive (closed) and reactive (open) states. We monitor RNA conformational dynamics over distinct time domains by varying the electrophilicity of the acylating reagent. Select C2'-endo nucleotides are nonreactive toward fast reagents but reactive toward slower SHAPE reagents in both model RNAs and in a large RNA with a tertiary fold. We conclude, first, that the C2'-endo conformation by itself does not govern SHAPE reactivity. However, some C2'-endo nucleotides undergo extraordinarily slow conformational changes, on the order of 10(-4) s(-1). Due to their distinctive local dynamics, C2'-endo nucleotides have the potential to function as rate-determining molecular switches and are likely to play central, currently unexplored, roles in RNA folding and function.  相似文献   

15.
A synthetic strategy that allows for the site-specific attachment of polymers such as poly(ethylene glycol) (PEG) to protein pharmaceuticals is described. PEG was attached to a 67-amino acid fully synthetic CCL-5 (RANTES) analogue at its GAG binding site both to reduce aggregation and to increase the circulating lifetime. Effective protection of an Aoaa chemoselective linker during peptide assembly, total chemical protein synthesis, and protein folding was achieved with an isopropylidene group. Mild deprotection of the resulting folded synthetic protein and subsequent polymer attachment occur without interference with the native folded structure and activity.  相似文献   

16.
Determination of sizes and flexibilities of RNA molecules is important in understanding the nature of packing in folded structures and in elucidating interactions between RNA and DNA or proteins. Using the coordinates of the structures of RNA in the Protein Data Bank we find that the size of the folded RNA structures, measured using the radius of gyration R(G), follows the Flory scaling law, namely, R(G)=5.5N(1/3) A, where N is the number of nucleotides. The shape of RNA molecules is characterized by the asphericity Delta and the shape S parameters that are computed using the eigenvalues of the moment of inertia tensor. From the distribution of Delta, we find that a large fraction of folded RNA structures are aspherical and the distribution of S values shows that RNA molecules are prolate (S>0). The flexibility of folded structures is characterized by the persistence length l(p). By fitting the distance distribution function P(r), that is computed using the coordinates of the folded RNA, to the wormlike chain model we extracted the persistence length l(p). We find that l(p) approximately 1.5N(0.33) A which might reflect the large separation between the free energies that stabilize secondary and tertiary structures. The dependence of l(p) on N implies that the average length of helices should increase as the size of RNA grows. We also analyze packing in the structures of ribosomes (30S, 50S, and 70S) in terms of R(G), Delta, S, and l(p). The 70S and the 50S subunits are more spherical compared to most RNA molecules. The globularity in 50S is due to the presence of an unusually large number (compared to 30S subunit) of small helices that are stitched together by bulges and loops. Comparison of the shapes of the intact 70S ribosome and the constituent particles suggests that folding of the individual molecules might occur prior to assembly.  相似文献   

17.
Background: Group I introns self-splice via two consecutive trans-esterification reactions in the presence of guanosine cofactor and magnesium ions. Comparative sequence analysis has established that a catalytic core of about 120 nucleotides is conserved in all known group I introns. This core is generally not sufficient for activity, however, and most self-splicing group I introns require non-nonserved peripheral elements to stabilize the complete three-dimensional (3D) structure. The physico-chemical properties of group I introns make them excellent systems for unraveling the structural basis of the RNA-RNA interactions responsible for promoting the self-assembly of complex RNAs.Results: We present phylogenetic and experimental evidence for the existence of three additional tertiary base pairings between hairpin loops within peripheral components of subgroup IC1 and ID introns. Each of these new long range interactions, called P13, P14 and P16, involves a terminal loop located in domain 2. Although domains 2 of IC and ID introns share very strong sequence similarity, their terminal loops interact with domains 5 and 9 (subgroup IC1) and domain 6 (subgroup ID). Based on these tertiary contacts, comparative sequence analysis, and published experimental results such as Fe(II)-EDTA protection patterns, we propose 3D models for two entire group I introns, the subgroup IC1 intron in the large ribosomal precursor RNA of Tetrahymena thermophila and the SdCob.1 subgroup ID intron found in the cytochrome b gene of Saccharomyces douglasii.Conclusions: Three-dimensional models of group I introns belonging to four different subgroups are now available. They all emphasize the modular and hierarchical organization of the architecture of group I introns and the widespread use of base-pairings between terminal hairpin loops for stabilizing the folded and active structures of large and complex RNA molecules.  相似文献   

18.
The 2'-hydroxyl group contributes inextricably to the functional behavior of many RNA molecules, fulfilling numerous essential chemical roles. To assess how hydroxyl groups impart functional behavior to RNA, we developed a series of experimental strategies using an array of nucleoside analogs. These strategies provide the means to investigate whether a hydroxyl group influences function directly (via hydrogen bonding or metal ion coordination), indirectly (via space-filling capacity, inductive effects, and sugar conformation), or through interactions with solvent. The nucleoside analogs span a broad range of chemical diversity, such that quantitative structure activity relationships (QSAR) now become possible in the exploration of RNA biology. We employed these strategies to investigate the spliced exons reopening (SER) reaction of the group II intron. Our results suggest that the cleavage site 2'-hydroxyl may mediate an interaction with a water molecule.  相似文献   

19.
E Unus pluribum, or "Of One, Many", may be at the root of decoding the RNA sequence-structure-function relationship. RNAs embody the large majority of genes in higher eukaryotes and fold in a sequence-directed fashion into three-dimensional structures that perform functions conserved across all cellular life forms, ranging from regulating to executing gene expression. While it is the most important determinant of the RNA structure, the nucleotide sequence is generally not sufficient to specify a unique set of secondary and tertiary interactions due to the highly frustrated nature of RNA folding. This frustration results in folding heterogeneity, a common phenomenon wherein a chemically homogeneous population of RNA molecules folds into multiple stable structures. Often, these alternative conformations constitute misfolds, lacking the biological activity of the natively folded RNA. Intriguingly, a number of RNAs have recently been described as capable of adopting multiple distinct conformations that all perform, or contribute to, the same function. Characteristically, these conformations interconvert slowly on the experimental timescale, suggesting that they should be regarded as distinct native states. We discuss how rugged folding free energy landscapes give rise to multiple native states in the Tetrahymena Group I intron ribozyme, hairpin ribozyme, sarcin-ricin loop, ribosome, and an in vitro selected aptamer. We further describe the varying degrees to which folding heterogeneity impacts function in these RNAs, and compare and contrast this impact with that of heterogeneities found in protein folding. Embracing that one sequence can give rise to multiple native folds, we hypothesize that this phenomenon imparts adaptive advantages on any functionally evolving RNA quasispecies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号