首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The ground and electronically excited states of cyclic N(3) (+) are characterized at the equilibrium D(3h) geometry and along the Jahn-Teller distortions. Lowest excited states are derived from single excitations from the doubly degenerate highest occupied molecular orbitals (HOMOs) to the doubly degenerate lowest unoccupied molecular orbitals (LUMOs), which give rise to two exactly and two nearly degenerate states. The interaction of two degenerate states with two other states eliminates linear terms and results in a glancing rather than conical Jahn-Teller intersection. HOMO-2-->LUMOs excitations give rise to two regular Jahn-Teller states. Optimized structures, vertical and adiabatic excitation energies, frequencies, and ionization potential (IP) are presented. IP is estimated to be 10.595 eV, in agreement with recent experiments.  相似文献   

2.
The angular distribution parameter, β, was determined for the valence orbitals (IP ′ 21.2 eV) of CCl4, CHCl3, CH2Cl2, and CH3Cl in the 10–30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl4 results were compared with theoretical CCl4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.  相似文献   

3.
The present paper deals with the interpretation of the photoelectron spectrum of the Li(3)O(-). After several failed attempts to attribute all of the observed peaks in the experimental spectrum to anionic species, neutral species were considered assuming a sequential two-photon absorption mechanism. We find that only two of the six observed peaks can be attributed to photodetachments and that all other observed features can be assigned to ionizations from the ground and excited states of the neutral. Nuclear distributions other than three lithium atoms surrounding the oxygen are not likely to be stable. The interpretation of the experimental peak located at about 1.2 eV remains challenging. It can either be attributed to the second electron detachment (involving the HOMO -1 orbital) energy from the anion's triplet C(2v) state or to higher excited states (involving HOMO +10, 11, 12... orbitals) of the neutral species. Furthermore, we have examined the influence of vibrational displacements on the location of the observed peaks. We find that this effect is smaller than 0.05 eV and, therefore, must be considered as negligible.  相似文献   

4.
The interfacial electronic structure of chemisorbed styrene on Cu(111) was successfully investigated with two-photon photoemission spectroscopy. We observed unoccupied states 3.5 eV above the Fermi level and occupied states 2.0 eV below the Fermi level. Polarization results reveal that the occupied and unoccupied states arise from bonding and antibonding orbitals formed by hybridization of copper (surface state and d-band orbitals) and styrene (pi1* and pi2* orbitals).  相似文献   

5.
The electronic structure of tetracyanoquinodimethane (TCNQ) is calculated using the new semiempirical method HAM /3. The calculated photoelectron spectrum is in reasonable agreement with the measured spectrum. The excitation energies are obtained directly in HAM as the differences of the energies of the unoccupied and the occupied orbitals. The calculated UV spectrum is in good agreement with the measurements. The weak band at 5.3 eV, which earlier had been assumed to correspond to a forbidden transition, is allowed according to HAM . The electron affinity is also in reasonable agreement with the measured value. An explanation has been given for the experimental observation of several resonance states (negative electron affinities). p-Quinodimethane has also been studied.  相似文献   

6.
Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals.  相似文献   

7.
The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.  相似文献   

8.
In continuation of a recent study of the electronic structure of norbornane [J. Chem. Phys., 2004, 121, 10525] by means of electron momentum spectroscopy (EMS), we present Green's Function calculations of the ionization spectrum of this compound at the ADC(3) level using basis sets of varying quality, along with accurate evaluations at the CCSD(T) level of the vertical (26.5 eV) and adiabatic (22.1 eV) double ionization thresholds under C(2v) symmetry. The obtained results are compared with newly recorded ultraviolet photoemission spectra (UPS), up to binding energies of 40 eV. The theoretical predictions are entirely consistent with experiment and indicate that, in a vertical depiction of ionization, shake-up states at binding energies larger than approximately 26.5 eV tend to decay via emission of a second electron in the continuum. A band of s-type symmetry that has been previously seen at approximately 25 eV in the electron impact ionization spectra of norbornane is entirely missing in the UPS measurements and theoretical ADC(3) spectra. With regard to these results and to the time scales characterizing electron-electron interactions in EMS (10(-17) s) as compared with that (10(-13) s) of photon-electron interactions in UPS, and considering the p-type symmetry of the electron momentum distributions for the nearest 1b(1) and 1b(2) orbitals, this additional band can certainly not be due to adiabatic double ionization processes starting from the ground electronic state of norbornane, or to exceptionally strong vibronic coupling interactions between cationic states derived from ionization of the latter orbitals. It is therefore tentatively ascribed to autoionization processes via electronically excited and possibly dissociating states.  相似文献   

9.
人们知道,Hel紫外光电子能借(PES)提供研究分子轨道能量、能级次序、成键类型以及由光电子峰强度所反映的电离轨道特性等信息是其他手段没有的,因而PES技术已广泛地用于众多化合物分子电子结构的研究中.有机础化合物由于它们高的反应活性作为合成试剂而信受人们重视[‘-  相似文献   

10.
The ionization potentials were calculated for Be using the extended Koopmans' theorem (EKT ) using several full configuration interaction (CI ) and multiconfigurational-self-consistent-field (MCSCF ) wave functions as reference wave functions. The wave functions used account for 89.7–96.7% of the correlation energy. Comparisons are made with experimental values and with δCI values calculated as the difference in energy obtained from CI wave functions for Be and Be+. The best EKT IP differed from the δCI value by 0.0003 eV for the lowest IP and by 0.0006 eV for ionization into the lowest 2P state of Be+. A calculation of ionization into the second 2P state of Be+ requires diffuse orbitals that are unimportant in the wave function for the ground state of Be. This results in small natural orbital occupation numbers for natural orbitals needed in the EKT calculation. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
利用密度泛函理论(DFT)总能计算研究了Ni(110)-p2mg(2×1)-CO表面的原子结构和电子态. 计算结果表明: CO分子吸附于该表面的短桥位附近, 分子吸附能为1.753 eV, CO分子的键长dC—O为0.117 nm, 分子与表面竖直方向的夹角为20.0°, 碳原子和短桥位中点的连线与竖直方向的夹角为20.9°; 吸附的CO分子内原子间的伸缩振动频率为1876和1803 cm-1. 态密度研究结果表明吸附作用主要来自CO分子π、σ轨道与衬底d轨道间的杂化作用. CO分子σ轨道和衬底表面镍原子dxz轨道杂化形成的表面电子态主要位于费米能以下-10.4 至-8.8 eV和-7.4至-5.1 eV 范围内. σ和dxz轨道间的杂化作用可能是形成p2mg表面对称性的重要因素之一.  相似文献   

12.
13.
《Chemical physics》1987,115(3):453-459
The vacuum ultraviolet (VUV) and photoelectron spectra of SnH3CH3 were recorded between 6.20 and 11.28 eV and between 8 and 17 eV, respectively. Spectra were interpreted using ab initio CI calculations. The photoelectron spectrum confirmed the low SnC bond energy. The first two ionization potentials (IP) observed were attributed to the ionization of the a1 (10.65 eV) and e orbitals (11.15 and 11.60 eV, split by the Jahn-Teller effect), thereby showing an inversion of IPs compared with ethane. Similarly, the first two bands of the VUV spectrum (at 7.04 and 7.72–8.16 eV) were attributed to a1 and e transitions towards the Rydberg s orbital. A splitting of the same order of magnitude as that of the photoelectron spectrum could be noted in the E state. Observed transitions between 8.65 and 10 eV showed a strong interaction between the Rydberg p MO and the σ*SnC antibonding orbital. Primarilyvalence transitions were encountered beyond 10 eV.  相似文献   

14.
The transition energies to the low-lying singlet and triplet excited states of Cr(CO)(6) are computed by equation-of-motion coupled cluster singles and doubles (EOM-CCSD) and similarity transformed equation-of-motion coupled cluster singles and doubles (STEOM-CCSD) methods with all-electrons basis sets. Both experimental and optimized geometries are used for the calculations. Calculations with various basis sets, among them one of the largest calculations performed at the EOM-CCSD level, based on atomic natural orbitals with 627 functions, were used to evaluate the basis set influence on computed transition energies. The presence of a shoulder at 3.9 eV in the experimental absorption spectrum, assigned to the (1)A(1g)-->(1)T(2u) transition, which was not reproduced by recent density functional theory (DFT) or multi-state complete active space perturbation theory (MS-CASPT2) is supported by the present STEOM-CCSD calculations with a theoretical value of 3.92 eV. In addition to this weak (1)A(1g)--> a (1)T(2u) absorption, we observe two strong absorptions corresponding to (1)A(1g)--> a (1)T(1u) at 4.37 eV (vs. an experimental value of 4.46 eV) and (1)A(1g)--> b (1)T(1u) at 5.20 eV (vs. an experimental value of 5.53 eV). Both are characterized as metal-to-ligand charge-transfer (MLCT) allowed transitions. The first metal-centered (MC) absorption at 4.37 eV in our best calculation is degenerate with the lowest MLCT absorbing state. The one-dimensional potential energy curves associated to the low-lying singlet MLCT and MC states as a function of the chromium axial carbonyl bond distance q(a) = [Cr-CO(axial)] show that an avoided crossing exists between the a (1)T(1g) (MC) and a (1)T(1u) (MLCT) states near 1.92 A, which is very close to the equilibrium Cr-CO distance. Moreover, the MC state seems to be dissociative for the CO loss. These two important features could explain the ultra-fast dissociation of CO (100 fs) observed in recent low intensity laser probed gas phase experiments.  相似文献   

15.
All transitions in the experimentally designated and numbered Q, B, and N bands (< 4.8 eV) of the electronic absorption spectrum of zinc phthalocyanine (ZnPc) are assigned on the basis of one‐to‐one agreement between calculated and experimentally observed transition energies and oscillator strengths. Each band in this range of the spectrum represents a ligand‐based transition that originates from a combination of occupied orbitals and terminates in the lowest unoccupied molecular orbital (LUMO, ). Transition energies in the L and C regions (4.8–6.5 eV) are harder to capture quantitatively, due to the partial Rydberg character of some of the excited states, and so are tentatively assigned here. Most transitions in this range correspond to excitations from the HOMO or lower‐energy orbitals to π orbitals above the LUMO.  相似文献   

16.
SCF Xα MO calculations on the ground state and optical excitation transition states of TiCl4 accurately predict the energies of its UV absorption peaks. Calculations on the Ti2p core ion state and associated transition states indicate that the recently observed low energy (4.0 eV) Ti2p satellite arises from ligand to metal charge transfer excitations while the satellite at high energy (9.4 eV), similar to those previously observed in Ti(IV) compounds, can be attributed to transitions from the highest filled orbitals to empty orbitals with Cl3pTi4s. 4p antibonding character.  相似文献   

17.
S1 --> S(n) spectra of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication have been measured in the energy range 2-3 eV above S1 at room temperature in solution by means of transient absorption spectroscopy exciting with femtosecond pulses. Highly excited pi pi* states not active in the conventional S0 --> S(n) spectrum have been observed. The experimental data are discussed on the basis of the time dependent density functional theory taking advantage of large scale calculations of configuration interaction between singly excited configurations (DF/SCI). The DF/SCI calculation on porphyrin has allowed to assign g states active in the S1 --> S(n) spectrum. Applying the same calculation method to tetraoxaporphyrin dication the S0 --> S(n) spectrum is reproduced relatively to the Q and B (Soret) bands as well as to the weaker E(u) bands at higher energy. According to our calculation the S1 --> S(n) transient spectrum is related to states of g symmetry mainly arising from excitations between doubly degenerate pi and pi* orbitals such as 2e(g) --> 4e(g). In the case of diprotonated porphyrin it is shown that the complex of the macrocycle with two trifluoroacetate anions plays a significant role for absorption. Charge transfer excitations from the anions to the macrocycle contribute to absorption above the Soret band, justifying the intensity enhancement of the S0 --> S(n) spectrum with respect to the other two macrocyclic systems.  相似文献   

18.
The electronic states of Ba24Ge100 are studied by soft x-ray photoelectron spectroscopy (XPS) at a high-energy photon factory. A large reduction in the density of states (DOS) at the Fermi level is clearly shown before and after the electronic phase transition at 200 K. The changes in the spectrum widths and the fine structures of the core-level Ba 4d spectra give a very reasonable indication of the Ba-atom rattlings in the clathrate polyhedra. On-resonance experiments using the excitation from Ba 3d to 4f levels display that the wave functions of Ba 5d and 6s orbitals give only a small contribution to make a Fermi surface through the hybridization with the Ge20 cluster orbitals. Importantly, reliable values of the DOS at the Fermi level NEF are successfully deduced, using two data sets of DOS obtained from high-resolution XPS and the total magnetic susceptibilities by a superconducting quantum interference device, to be 0.149 and 0.0427 states eV(-1) (Ge atom)(-1) for a high-temperature and for a low-temperature phase.  相似文献   

19.
电子动量谱学(EMS)是在原子、分子和固体物理中研究电子结构的一种强有力的工具,它基于运动学条件完全确定的(e,2e)碰撞电离反应[1-3].本文报告用高分辨电子动量谱仪首次测量得到丙烷门3H8)分子的价轨道电子(252)的动量分布·丙烷(C3Hs)价轨道电子的动量分布实验是  相似文献   

20.
Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号