首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Consider an irreducible, admissible representation π of GL(2,F) whose restriction to GL(2,F) +  breaks up as a sum of two irreducible representations π  +  + π −. If π = r θ , the Weil representation of GL(2,F) attached to a character θ of K * does not factor through the norm map from K to F, then c ? [^(K*)]\chi\in \widehat{K^*} with (c. q-1)| F * =w K/F(\chi . \theta ^{-1})\vert _{ F^{ * }}=\omega _{ {K/F}} occurs in r θ  +  if and only if e(qc-1,y0)=e([`(q)]c-1,y0)=1\epsilon(\theta\chi^{-1},\psi_0)=\epsilon(\overline \theta\chi^{-1},\psi_0)=1 and in r θ − if and only if both the epsilon factors are − 1. But given a conductor n, can we say precisely how many such χ will appear in π? We calculate the number of such characters at each given conductor n in this work.  相似文献   

2.
Let F ì PG \mathcal{F} \subset {\mathcal{P}_G} be a left-invariant lower family of subsets of a group G. A subset A ⊂ G is called F \mathcal{F} -thin if xA ?yA ? F xA \cap yA \in \mathcal{F} for any distinct elements x, yG. The family of all F \mathcal{F} -thin subsets of G is denoted by t( F ) \tau \left( \mathcal{F} \right) . If t( F ) = F \tau \left( \mathcal{F} \right) = \mathcal{F} , then F \mathcal{F} is called thin-complete. The thin-completion t*( F ) {\tau^*}\left( \mathcal{F} \right) of F \mathcal{F} is the smallest thin-complete subfamily of PG {\mathcal{P}_G} that contains F \mathcal{F} . Answering questions of Lutsenko and Protasov, we prove that a set A ⊂ G belongs to τ*(G) if and only if, for any sequence (g n ) nω of nonzero elements of G, there is nω such that
?i0, ?, in ? { 0,  1 } g0i0 ?gninA ? F . \bigcap\limits_{{i_0}, \ldots, {i_n} \in \left\{ {0,\;1} \right\}} {g_0^{{i_0}} \ldots g_n^{{i_n}}A \in \mathcal{F}} .  相似文献   

3.
4.
We establish necessary and sufficient conditions under which a sequence x 0 = y 0 , x n+1 = Ax n  + y n+1 , n ≥ 0, is bounded for each bounded sequence { yn :n \geqslant 0 } ì { x ? èn = 1 D( An ) |supn \geqslant 0 || An x || < ¥ }\left\{ {y_n :n \geqslant 0} \right\} \subset \left\{ {\left. {x \in \bigcup\nolimits_{n = 1}^\infty {D\left( {A^n } \right)} } \right|\sup _{n \geqslant 0} \left\| {A^n x} \right\| < \infty } \right\}, where A is a closed operator in a complex Banach space with domain of definition D(A) .  相似文献   

5.
Let (B i ) iI be a set of Lie algebras; let X be a free Lie algebra; let * X be their free sum; let R be an ideal of F such that RB i = 1 (iI); let V be a variety of Lie algebras such that V(R) is an ideal of F. Under some restrictions, we construct an embedding of F/V(R) into the verbal wreath product of a free algebra of the variety V with F/R. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 10, No. 4, pp. 235–241, 2004.  相似文献   

6.
The Birman-Murakami-Wenzl algebras (BMW algebras) of type E n for n = 6; 7; 8 are shown to be semisimple and free over the integral domain \mathbbZ[ d±1,l±1,m ]
/ ( m( 1 - d ) - ( l - l - 1 ) ) {{{\mathbb{Z}\left[ {{\delta^{\pm 1}},{l^{\pm 1}},m} \right]}} \left/ {{\left( {m\left( {1 - \delta } \right) - \left( {l - {l^{ - 1}}} \right)} \right)}} \right.} of ranks 1; 440; 585; 139; 613; 625; and 53; 328; 069; 225. We also show they are cellular over suitable rings. The Brauer algebra of type E n is a homomorphic ring image and is also semisimple and free of the same rank as an algebra over the ring \mathbbZ[ d±1 ] \mathbb{Z}\left[ {{\delta^{\pm 1}}} \right] . A rewrite system for the Brauer algebra is used in bounding the rank of the BMW algebra above. The generalized Temperley-Lieb algebra of type En turns out to be a subalgebra of the BMW algebra of the same type. So, the BMW algebras of type E n share many structural properties with the classical ones (of type A n ) and those of type D n .  相似文献   

7.
We define a rank variety for a module of a noncocommutative Hopf algebra A = L \rtimes GA = \Lambda \rtimes G where L = k[X1, ..., Xm]/(X1l, ..., Xml), G = (\mathbbZ/l\mathbbZ)m\Lambda = k[X_1, \dots, X_m]/(X_1^{\ell}, \dots, X_m^{\ell}), G = (\mathbb{Z}/\ell\mathbb{Z})^m and char k does not divide ℓ, in terms of certain subalgebras of A playing the role of “cyclic shifted subgroups”. We show that the rank variety of a finitely generated module M is homeomorphic to the support variety of M defined in terms of the action of the cohomology algebra of A. As an application we derive a theory of rank varieties for the algebra Λ. When ℓ=2, rank varieties for Λ-modules were constructed by Erdmann and Holloway using the representation theory of the Clifford algebra. We show that the rank varieties we obtain for Λ-modules coincide with those of Erdmann and Holloway.  相似文献   

8.
It has been known since the 1970s that the Torelli map M  g →A  g , associating to a smooth curve its Jacobian, extends to a regular map from the Deligne–Mumford compactification [`(\operatorname M)]g\overline {\operatorname {M}}_{g} to the 2nd Voronoi compactification [`(\operatorname A)]gvor\overline {\operatorname {A}}_{g}^{\mathrm {vor}}. We prove that the extended Torelli map to the perfect cone (1st Voronoi) compactification [`(\operatorname A)]gperf\overline {\operatorname {A}}_{g}^{\mathrm {perf}} is also regular, and moreover [`(\operatorname A)]gvor\overline {\operatorname {A}}_{g}^{\mathrm {vor}} and [`(\operatorname A)]gperf\overline {\operatorname {A}}_{g}^{\mathrm {perf}} share a common Zariski open neighborhood of the image of [`(\operatorname M)]g\overline {\operatorname {M}}_{g}. We also show that the map to the Igusa monoidal transform (central cone compactification) is not regular for g≥9; this disproves a 1973 conjecture of Namikawa.  相似文献   

9.
Suppose that L(X) is a free Lie algebra of finite rank over a field of positive characteristic. Let G be a nontrivial finite group of homogeneous automorphisms of L(X). It is known that the subalgebra of invariants H = L G is infinitely generated. Our goal is to describe how big its free generating set is. Let Y = èn = 1 Yn Y = \bigcup\limits_{n = 1}^\infty {{Y_n}} be a homogeneous free generating set of H, where elements of Y n are of degree n with respect to X. We describe the growth of the generating function of Y and prove that |Y n | grow exponentially.  相似文献   

10.
If A is a Lie algebroid over a foliated manifold (M, F){(M, {\mathcal {F}})}, a foliation of A is a Lie subalgebroid B with anchor image TF{T{\mathcal {F}}} and such that A/B is locally equivalent with Lie algebroids over the slice manifolds of F{\mathcal F}. We give several examples and, for foliated Lie algebroids, we discuss the following subjects: the dual Poisson structure and Vaintrob's supervector field, cohomology and deformations of the foliation, integration to a Lie groupoid. In the last section, we define a corresponding notion of a foliation of a Courant algebroid A as a bracket–closed, isotropic subbundle B with anchor image TF{T{\mathcal {F}}} and such that B ^ /B{B^{ \bot } /B} is locally equivalent with Courant algebroids over the slice manifolds of F{\mathcal F}. Examples that motivate the definition are given.  相似文献   

11.
The Lie module of the group algebra F\mathfrakSn{{F\mathfrak{S}_n}} of the symmetric group is known to be not projective if and only if the characteristic p of F divides n. We show that in this case its non-projective summands belong to the principal block of F\mathfrakSn{{F\mathfrak{S}_n}} . Let V be a vector space of dimension m over F, and let L n (V) be the n-th homogeneous part of the free Lie algebra on V; this is a polynomial representation of GL m (F) of degree n, or equivalently, a module of the Schur algebra S(m, n). Our result implies that, when mn, every summand of L n (V) which is not a tilting module belongs to the principal block of S(m, n), by which we mean the block containing the n-th symmetric power of V.  相似文献   

12.
Let G be an abelian group, ε an anti-bicharacter of G and L a G-graded ε Lie algebra (color Lie algebra) over a field of characteristic zero. We prove that for all G-graded, positively filtered A such that the associated graded algebra is isomorphic to the G-graded ε-symmetric algebra S(L), there is a G- graded ε-Lie algebra L and a G-graded scalar two cocycle , such that A is isomorphic to U ω (L) the generalized enveloping algebra of L associated with ω. We also prove there is an isomorphism of graded spaces between the Hochschild cohomology of the generalized universal enveloping algebra U(L) and the generalized cohomology of the color Lie algebra L. Supported by the EC project Liegrits MCRTN 505078.  相似文献   

13.
We consider a relationship between two sets of extensions of a finite finitely additive measure μ defined on an algebra \mathfrakB \mathfrak{B} of sets to a broader algebra \mathfrakA \mathfrak{A} . These sets are the set ex S μ of all extreme extensions of the measure μ and the set H μ of all extensions defined as l(A) = [^(m)]( h(A) ),   A ? \mathfrakA \lambda (A) = \hat{\mu }\left( {h(A)} \right),\,\,\,A \in \mathfrak{A} , where [^(m)] \hat{\mu } is a quotient measure on the algebra \mathfrakB
/ m {{\mathfrak{B}} \left/ {\mu } \right.} of the classes of μ-equivalence and h:\mathfrakA ? \mathfrakB / m h:\mathfrak{A} \to {{\mathfrak{B}} \left/ {\mu } \right.} is a homomorphism extending the canonical homomorphism \mathfrakB \mathfrak{B} to \mathfrakB / m {{\mathfrak{B}} \left/ {\mu } \right.} . We study the properties of extensions from H μ and present necessary and sufficient conditions for the existence of these extensions, as well as the conditions under which the sets ex S μ and H μ coincide.  相似文献   

14.
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operators on a commutative algebra in such a way that derivations of the commutative algebra are replaced by \mathbbDer(A){\mathbb{D}{\rm er}(A)}, the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A){\mathcal{F}(A)}, a certain ‘Fock space’ associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)){\mathcal{D}(\mathcal{F}(A))} of differential operators is filtered and gr D(F(A)){\mathcal{D}(\mathcal{F}(A))}, the associated graded algebra, is commutative in some ‘wheeled’ sense. The resulting ‘wheeled’ Poisson structure on gr D(F(A)){\mathcal{D}(\mathcal{F}(A))} is closely related to the double Poisson structure on TA \mathbbDer(A){T_{A} \mathbb{D}{\rm er}(A)} introduced by Van den Bergh. Specifically, we prove that gr D(F(A)) @ F(TA(\mathbbDer(A)),{\mathcal{D}(\mathcal{F}(A))\cong\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)),} provided the algebra A is smooth. Our construction is based on replacing vector spaces by the new symmetric monoidal category of wheelspaces. The Fock space F(A){\mathcal{F}(A)} is a commutative algebra in this category (a “commutative wheelgebra”) which is a structure closely related to the notion of wheeled PROP. Similarly, we have Lie, Poisson, etc., wheelgebras. In this language, D(F(A)){\mathcal{D}(\mathcal{F}(A))} becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper, we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on \mathbbDer(A){\mathbb{D}{\rm er}(A)} gives rise to a second-order (wheeled) differential operator, a noncommutative analogue of the Batalin-Vilkovisky (BV) operator, that makes F(TA(\mathbbDer(A))){\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)))} a BV wheelgebra. In the final section, we explain how the wheeled differential operators D(F(A)){\mathcal{D}(\mathcal{F}(A))} produce ordinary differential operators on the varieties of n-dimensional representations of A for all n ≥ 1.  相似文献   

15.
Let k be a principal ideal domain with identity and characteristic zero. For a positive integer n, with n \geqq 2n \geqq 2, let H(n) be the group of all n x n matrices having determinant ±1\pm 1. Further, we write SL(n) for the special linear group. Let L be a free Lie algebra (over k) of finite rank n. We prove that the algebra of invariants LB(n) of B(n), with B(n) ? { H(n), SL(n)}B(n) \in \{ H(n), {\rm SL}(n)\} , is not a finitely generated free Lie algebra. Let us assume that k is a field of characteristic zero and let áSem(n) ?\langle {\rm Sem}(n) \rangle be the Lie subalgebra of L generated by the semi-invariants (or Lie invariants) Sem(n). We prove that áSem(n) ?\langle {\rm Sem}(n) \rangle is not a finitely generated free Lie algebra which gives a positive answer to a question posed by M. Burrow [4].  相似文献   

16.
To any field \Bbb K \Bbb K of characteristic zero, we associate a set (\mathbbK) (\mathbb{K}) and a group G0(\Bbb K) {\cal G}_0(\Bbb K) . Elements of (\mathbbK) (\mathbb{K}) are equivalence classes of families of Lie polynomials subject to associativity relations. Elements of G0(\Bbb K) {\cal G}_0(\Bbb K) are universal automorphisms of the adjoint representations of Lie bialgebras over \Bbb K \Bbb K . We construct a bijection between (\mathbbKG0(\Bbb K) (\mathbb{K})\times{\cal G}_0(\Bbb K) and the set of quantization functors of Lie bialgebras over \Bbb K \Bbb K . This construction involves the following steps.? 1) To each element v \varpi of (\mathbbK) (\mathbb{K}) , we associate a functor \frak a?\operatornameShv(\frak a) \frak a\mapsto\operatorname{Sh}^\varpi(\frak a) from the category of Lie algebras to that of Hopf algebras; \operatornameShv(\frak a) \operatorname{Sh}^\varpi(\frak a) contains U\frak a U\frak a .? 2) When \frak a \frak a and \frak b \frak b are Lie algebras, and r\frak a\frak b ? \frak a?\frak b r_{\frak a\frak b} \in\frak a\otimes\frak b , we construct an element ?v (r\frak a\frak b) {\cal R}^{\varpi} (r_{\frak a\frak b}) of \operatornameShv(\frak a)?\operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak a)\otimes\operatorname{Sh}^\varpi(\frak b) satisfying quasitriangularity identities; in particular, ?v(r\frak a\frak b) {\cal R}^\varpi(r_{\frak a\frak b}) defines a Hopf algebra morphism from \operatornameShv(\frak a)* \operatorname{Sh}^\varpi(\frak a)^* to \operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak b) .? 3) When \frak a = \frak b \frak a = \frak b and r\frak a ? \frak a?\frak a r_\frak a\in\frak a\otimes\frak a is a solution of CYBE, we construct a series rv(r\frak a) \rho^\varpi(r_\frak a) such that ?v(rv(r\frak a)) {\cal R}^\varpi(\rho^\varpi(r_\frak a)) is a solution of QYBE. The expression of rv(r\frak a) \rho^\varpi(r_\frak a) in terms of r\frak a r_\frak a involves Lie polynomials, and we show that this expression is unique at a universal level. This step relies on vanishing statements for cohomologies arising from universal algebras for the solutions of CYBE.? 4) We define the quantization of a Lie bialgebra \frak g \frak g as the image of the morphism defined by ?v(rv(r)) {\cal R}^\varpi(\rho^\varpi(r)) , where r ? \mathfrakg ?\mathfrakg* r \in \mathfrak{g} \otimes \mathfrak{g}^* .<\P>  相似文献   

17.
In this communication, we first compare z α and t ν,α , the upper 100α% points of a standard normal and a Student’s t ν distributions respectively. We begin with a proof of a well-known result, namely, for every fixed 0 < a < \frac120<\alpha <\frac{1}{2} and the degree of freedom ν, one has t ν,α  > z α . Next, Theorem 3.1 provides a new and explicit expression b ν ( > 1) such that for every fixed 0 < a < \frac120<\alpha < \frac{1}{2} and ν, we can conclude t ν,α  > b ν z α . This is clearly a significant improvement over the result that is customarily quoted in nearly every textbook and elsewhere. A proof of Theorem 3.1 is surprisingly simple and pretty. We also extend Theorem 3.1 in the case of a non-central Student’s t distribution (Section 3.3). In the context of Stein’s (Ann Math Stat 16:243–258, 1945; Econometrica 17:77–78, 1949) 100(1 − α)% fixed-width confidence intervals for the mean of a normal distribution having an unknown variance, we have examined the oversampling rate on an average for a variety of choices of m, the pilot sample size. We ran simulations to investigate this issue. We have found that the oversampling rates are approximated well by tn,a/22za/2-2t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2} for small and moderate values of m( ≤ 50) all across Table 2 where ν = m − 1. However, when m is chosen large (≥ 100), we find from Table 3 that the oversampling rates are not approximated by tn,a/22za/2-2t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2} very well anymore in some cases, and in those cases the oversampling rates either exceed the new lower bound of tn,a/22za/2-2,t_{\nu ,\alpha /2}^{2}z_{\alpha /2}^{-2}, namely bn2,b_{\nu }^{2}, or comes incredibly close to bn2b_{\nu }^{2} where ν = m − 1. That is, the new lower bound for a percentile of a Student’s t distribution may play an important role in order to come up with diagnostics in our understanding of simulated output under Stein’s fixed-width confidence interval method.  相似文献   

18.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

19.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

20.
LetF be a commutative ring with 1, letA, be a primeF-algebra with Martindale extended centroidC and with central closureA c and letR be a noncentral Lie ideal of the algebraA generatingA. Further, letZ(R) be the center ofR, let be the factor Lie algebra and let δ: be a Lie derivation. Suppose that char(A) ≠ 2 andA does not satisfySt 14, the standard identity of degree 14. We show thatR ΩC =Z(R) and there exists a derivation of algebrasD:AA c such that for allxR. Our result solves an old problem of Herstein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号