首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of an effort to expand the genetic alphabet, we have been examining the ability of predominately hydrophobic nucleobase analogues to pair in duplex DNA and during polymerase-mediated replication. We previously reported the synthesis and thermal stability of unnatural base pairs formed between nucleotides bearing simple methyl-substituted phenyl ring nucleobase analogues. Several of these pairs are virtually as stable and selective as natural base pairs in the same sequence context. Here, we report the characterization of polymerase-mediated replication of the same unnatural base pairs. We find that every facet of replication, including correct and incorrect base pair synthesis, as well as continued primer extension beyond the unnatural base pair, is sensitive to the specific methyl substitution pattern of the nucleobase analogue. The results demonstrate that neither hydrogen bonding nor large aromatic surface area is required for polymerase recognition, and that interstrand interactions between small aromatic rings may be optimized for replication. Combined with our previous results, these studies suggest that appropriately derivatized phenyl nucleobase analogues represent a promising approach toward developing a third base pair and expanding the genetic alphabet.  相似文献   

2.
In the development of orthogonal extra base pairs for expanding the genetic alphabet, we created novel, unnatural base pairs between fluorophore and quencher nucleobase analogues. We found that the nucleobase analogue, 2-nitropyrrole (denoted by Pn), and its 4-substitutions, such as 2-nitro-4-propynylpyrrole (Px) and 4-[3-(6-aminohexanamido)-1-propynyl]-2-nitropyrrole (NH(2)-hx-Px), act as fluorescence quenchers. The Pn and Px bases specifically pair with their pairing partner, 7-(2,2'-bithien-5-yl)imidazo[4,5-b]pyridine (Dss), which is strongly fluorescent. Thus, these unnatural Dss-Pn and Dss-Px base pairs function as reporter-quencher base pairs, and are complementarily incorporated into DNA by polymerase reactions as a third base pair in combination with the natural A-T and G-C pairs. Due to the static contact quenching, the Pn and Px quencher bases significantly decreased the fluorescence intensity of Dss by the unnatural base pairings in DNA duplexes. In addition, the Dss-Px pair exhibited high efficiency and selectivity in PCR amplification. Thus, this new unnatural base pair system would be suitable for detection methods of target nucleic acid sequences, and here we demonstrated the applications of the Dss-Pn and Dss-Px pairs as molecular beacons and in real-time PCR. The genetic alphabet expansion system with the replicable, unnatural fluorophore-quencher base pair will be a useful tool for sensing and diagnostic applications, as well as an imaging tool for basic research.  相似文献   

3.
Expansion of the genetic alphabet has been a long-time goal of chemical biology. A third DNA base pair that is stable and replicable would have a great number of practical applications and would also lay the foundation for a semisynthetic organism. We have reported that DNA base pairs formed between deoxyribonucleotides with large aromatic, predominantly hydrophobic nucleobase analogues, such as propynylisocarbostyril (dPICS), are stable and efficiently synthesized by DNA polymerases. However, once incorporated into the primer, these analogues inhibit continued primer elongation. More recently, we have found that DNA base pairs formed between nucleobase analogues that have minimal aromatic surface area in addition to little or no hydrogen-bonding potential, such as 3-fluorobenzene (d3FB), are synthesized and extended by DNA polymerases with greatly increased efficiency. Here we show that the rate of synthesis and extension of the self-pair formed between two d3FB analogues is sufficient for in vitro DNA replication. To better understand the origins of efficient replication, we examined the structure of DNA duplexes containing either the d3FB or dPICS self-pairs. We find that the large aromatic rings of dPICS pair in an intercalative manner within duplex DNA, while the d3FB nucleobases interact in an edge-on manner, much closer in structure to natural base pairs. We also synthesized duplexes containing the 5-methyl-substituted derivatives of d3FB (d5Me3FB) paired opposite d3FB or the unsubstituted analogue (dBEN). In all, the data suggest that the structure, electrostatics, and dynamics can all contribute to the extension of unnatural primer termini. The results also help explain the replication properties of many previously examined unnatural base pairs and should help design unnatural base pairs that are better replicated.  相似文献   

4.
Genetic information is encoded by, but potentially not limited to, a four-letter alphabet. A variety of predominantly hydrophobic nucleobase analogues that form self-pairs in DNA have been examined as third base pair candidates. For example, the PICS self-pair is both stable in duplex DNA and synthesized by some wild-type polymerases with reasonable efficiency. These efforts to expand the genetic code are expected to be facilitated by optimizing both the unnatural nucleobase analogues and the polymerases that replicate them. Here, we report the use of an activity-based selection system to evolve a DNA polymerase that more efficiently replicates DNA containing the PICS self-pair. The selection system is based on the co-display on phage of DNA polymerase libraries and a DNA substrate containing the self-pair. Only polymerases that accept the unnatural substrate incorporate a biotin-dUTP to the attached primer and may then be isolated on a streptavidin solid support. A mutant of Sf polymerase, P2, was evolved which both inserts dPICSTP opposite dPICS in the template and extends the unnatural primer terminus by incorporation of the next correct natural dNTP, where the parental enzyme catalyzes neither step at detectable rates. P2 was found to be a triple mutant of Sf, with the mutations F598I, I614F, and Q489H. The evolved properties of P2, as well as the observed mutations, are consistent with an increased affinity for the DNA primer-template containing the self-pair.  相似文献   

5.
As part of an effort to expand the genetic alphabet, we examined the synthesis of DNA with six different unnatural nucleotides bearing methoxy-derivatized nucleobase analogues. Different nucleobase substitution patterns were used to systematically alter the nucleobase electronics, sterics, and hydrogen-bonding potential. We determined the ability of the Klenow fragment of E. coli DNA polymerase I to synthesize and extend the different unnatural base pairs and mispairs under steady-state conditions. Unlike other hydrogen-bond acceptors examined in the past, the methoxy groups do not facilitate mispairing, implying that they are not recognized by any of the hydrogen-bond donors of the natural nucleobases; however, they do facilitate replication. The more efficient replication results largely from an increase in the rate of extension of primers terminating at the unnatural base pair and, interestingly, requires that the methoxy group be at the ortho position where it is positioned in the developing minor groove and can form a functionally important hydrogen bond with the polymerase. Thus, ortho methoxy groups should be generally useful for the effort to expand the genetic alphabet.  相似文献   

6.
The stability and replication of DNA containing self-pairs formed between unnatural nucleotides bearing benzofuran, benzothiophene, indole, and benzotriazole nucleobases are reported. These nucleobase analogues are based on a similar scaffold but have different hydrogen-bond donor/acceptor groups that are expected to be oriented in the duplex minor groove. The unnatural base pairs do not appear to induce major structural distortions and are accommodated within the constraints of a B-form duplex. The differences between these unnatural base pairs are manifest only in the polymerase-mediated extension step, not in base-pair stability or synthesis. The benzotriazole self-pair is extended with an efficiency that is only 200-fold less than a correct natural base pair. The data are discussed in terms of available polymerase crystal structures and imply that further modifications may result in unnatural base pairs that can be both efficiently synthesized and extended, resulting in an expanded genetic alphabet.  相似文献   

7.
DNA is inherently limited by its four natural nucleotides. Efforts to expand the genetic alphabet, by addition of an unnatural base pair, promise to expand the biotechnological applications available for DNA as well as to be an essential first step toward expansion of the genetic code. We have conducted two independent screens of hydrophobic unnatural nucleotides to identify novel candidate base pairs that are well recognized by a natural DNA polymerase. From a pool of 3600 candidate base pairs, both screens identified the same base pair, dSICS:dMMO2, which we report here. Using a series of related analogues, we performed a detailed structure-activity relationship analysis, which allowed us to identify the essential functional groups on each nucleobase. From the results of these studies, we designed an optimized base pair, d5SICS:dMMO2, which is efficiently and selectively synthesized by Kf within the context of natural DNA.  相似文献   

8.
Six new unnatural nucleobases have been synthesized and characterized in terms of stability and selectivity of self-pairing in duplex DNA and efficiency and fidelity of self-pairing during polymerase-mediated replication. Each nucleobase has a conserved ring structure but differs from the others in its specific pattern of substitution with oxygen and sulfur atoms. Heteroatom derivatization within the conserved scaffold is shown to have only moderate effects on unnatural self-pair synthesis by the polymerase; larger effects were observed on the thermal stability and polymerase-mediated extension of the self-pairs. The largest effects of heteroatom substitution were on the stability and synthesis of mispairs between the unnatural and natural bases. Certain heteroatom substitutions were found to have a general effect while others were found to have effects that were specific for a particular unnatural or natural base. The data are useful for designing stable and replicable third base pairs and for understanding the contributions of nucleobase shape, polarity, and polarizability to the stability and replication of DNA.  相似文献   

9.
Novel selective non-hydrogen-bonding DNA base pairs utilizing fluorinated nucleoside analogues have been investigated. Melting studies of DNA duplexes containing 2,3,4,5-tetrafluorobenzene and 4,5,6,7-tetrafluoroindole bases on opposite strands show greater stabilization of the duplex compared with nonfluorinated hydrocarbon controls. Overall, these hydrophobic analogues are destabilizing compared with natural base pairs but are stabilizing compared with natural base mismatches. Such selective pairing may be due to solvent avoidance of these hydrophobic structures, burying their surfaces within the duplex. Our findings suggest that polyfluoroaromatic bases might be employed as a new, selective base-pairing system orthogonal to the natural genetic system.  相似文献   

10.
Hydrophobic artificial nucleobase pairs without the ability to pair through hydrogen bonds are promising candidates to expand the genetic alphabet. The most successful nucleobase surrogates show little similarity to each other and their natural counterparts. It is thus puzzling how these unnatural molecules are processed by DNA polymerases that have evolved to efficiently work with the natural building blocks. Here, we report structural insight into the insertion of one of the most promising hydrophobic unnatural base pairs, the dDs–dPx pair, into a DNA strand by a DNA polymerase. We solved a crystal structure of KlenTaq DNA polymerase with a modified template/primer duplex bound to the unnatural triphosphate. The ternary complex shows that the artificial pair adopts a planar structure just like a natural nucleobase pair, and identifies features that might hint at the mechanisms accounting for the lower incorporation efficiency observed when processing the unnatural substrates.  相似文献   

11.
Six unnatural nucleotides featuring fluorine-substituted phenyl nucleobase analogues have been synthesized, incorporated into DNA, and characterized in terms of the structure and replication properties of the self-pairs they form. Each unnatural self-pair is accommodated in B-form DNA without detectable structural perturbation, and all are thermally stable and selective to roughly the same degree. Furthermore, the efficiency of polymerase-mediated mispair synthesis is similar for each unnatural nucleotide in the template. In contrast, the efficiency of polymerase-mediated self-pair extension is highly dependent on the specific fluorine substitution pattern. The most promising unnatural base pair candidate of this series is the 3-fluorobenzene self-pair, which is replicated with reasonable efficiency and selectivity.  相似文献   

12.
An unnatural base-pair architecture with base pairs 2.4 ? larger than the natural DNA-based genetic system (xDNA) is evaluated for its ability to function like DNA, encoding amino acids in the context of living cells. xDNA bases are structurally analogous to natural bases but homologated by the width of a benzene ring, increasing their sizes and resulting in a duplex that is wider than native B-DNA. Plasmids encoding green fluorescent protein were constructed to contain single and multiple xDNA bases (as many as eight) in both strands and were transformed into Escherichia coli. Although they yielded fewer colonies than the natural control plasmid, in all cases in which a modified plasmid (containing one, two, three, or four consecutive size-expanded base pairs) was used, the correct codon bases were substituted, yielding green colonies. All four xDNA bases (xA, xC, xG, and xT) were found to encode the correct partners in the replicated plasmid DNA, both alone and in longer segments of xDNA. Controls with mutant cell lines having repair functions deleted were found to express the gene correctly, ruling out repair of xDNA and confirming polymerase reading of the unnatural bases. Preliminary experiments with polymerase deletion mutants suggested combined roles of replicative and lesion-bypass polymerases in inserting correct bases opposite xDNA bases and in bypassing the xDNA segments. These experiments demonstrate a biologically functioning synthetic genetic set with larger-than-natural architecture.  相似文献   

13.
Ab initio calculations of halogen bond energies of artificial base pairs constructed between iodinated aromatic nucleobase mimics and nitrogen-containing acceptor molecules such as pyridine and imidazole suggest that modified base pairs are converted to optimized planar base pairs with weak Delta E values of -0.19 to -3.93 kcal/mol. To evaluate the contribution of halogen bonding toward duplex stabilization of such modified nucleobase mimics introduced into artificial base pairs, we synthesized three C-nucleoside analogues 1-3 with several iodinated aromatic rings and an imidazole nucleoside derivative 4 and incorporated them into oligodeoxynucleotides. Hybridization studies of modified oligodeoxynucleotides incorporating iodoaromatic bases showed their unique universal base-like ability; however, no indication of halogen bond formation was observed. A more sophisticated design is required for the development of new base pairs stabilized by halogen bonding.  相似文献   

14.
Expansion of the genetic alphabet with an unnatural base pair is a long‐standing goal of synthetic biology. We have developed a class of unnatural base pairs, formed between d 5SICS and analogues of d MMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, we report the synthesis of five new d MMO2 analogues bearing different substituents designed to be oriented into the developing major groove and an analysis of their insertion opposite d 5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the analysis of the previously optimized pair, d NaM –d 5SICS , to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examined. The resulting structure–activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addition, we identify an analogue (d NMO1 ) that is a better partner for d 5SICS than any of the previously identified d MMO2 analogues with the exception of d NaM . We also found that d NaM –d 5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.  相似文献   

15.
The synthesis of nucleoside analogues incorporating 4-(5-pyrimidinyl)-1,2,3-triazole aglycons as expanded purine nucleobase mimics were accessed using the copper-catalyzed azide-alkyne Huisgen cycloaddition between a ribosyl azide and 5-alkynylpyrimidines. Depending on the nature of the alkyne employed, other nucleoside analogues that possess fluorescence or potential metal-binding properties were prepared. Computational studies were undertaken on the purine analogues and indicate that the heterocycles of the unfused nucleobase prefer a coplanar arrangement and the anti-glycosidic conformer is favoured in most instances.  相似文献   

16.
A tandem Diels-Alder/Schmidt reaction provided an efficient route for the exploration of unnatural Stemona alkaloid analogues. Thus, a series of tricyclic scaffolds were efficiently prepared and then elaborated into seven sets of functionalized analogues. These derivatives incorporated appended heterocycles, such as indoles and quinolines, or other diversity-incorporating moieties such as carbamates and amines. Both the scaffold-generation sequence and the diversification steps could be manipulated to provide regio- and diastereochemically pure products.  相似文献   

17.
18.
Expansion of the genetic alphabet is an ambitious goal. A recent breakthrough has led to the eight-base (hachimoji) genetics having canonical and unnatural bases. However, very little is known on the molecular-level features that facilitate the candidature of unnatural bases as genetic alphabets. Here we amalgamated DFT calculations and MD simulations to analyse the properties of the constituents of hachimoji DNA and RNA. DFT reveals the dominant syn conformation for isolated unnatural deoxyribonucleosides and at the 5′-end of oligonucleotides, although an anti/syn mixture is predicted at the nonterminal and 3′-terminal positions. However, isolated ribonucleotides prefer an anti/syn mixture, but mostly prefer anti conformation at the nonterminal positions. Further, the canonical base pairing combinations reveals significant strength, which may facilitate replication of hachimoji DNA. We also identify noncanonical base pairs that can better tolerate the substitution of unnatural pairs in RNA. Stacking strengths of 51 dimers reveals higher average stacking stabilization of dimers of hachimoji bases than canonical bases, which provides clues for choosing energetically stable sequences. A total of 14.4 μs MD simulations reveal the influence of solvent on the properties of hachimoji oligonucleotides and point to the likely fidelity of replication of hachimoji DNA. Our results pinpoint the features that explain the experimentally observed stability of hachimoji DNA.  相似文献   

19.
We developed intramolecular dual fluorophore-quencher base analogues for site-specific incorporation into DNA by an unnatural base pair replication system. An unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) exhibits high fidelity in PCR amplification, and the 2-nitropyrrole moiety of Px acts as a quencher. Deoxyribonucleoside triphosphates of Px linked with a fluorophore (Cy3, Cy5 or FAM) were chemically synthesized, and the fluorescent properties and the enzymatic incorporation of the fluorophore-linked dPxTPs into DNA were examined in PCR amplification. The fluorophore-linked dPxTPs were site-specifically incorporated by PCR into DNA, opposite Ds in templates, with high selectivity. Furthermore, we found that the fluorescence of the triphosphates was partially quenched, but increased upon their incorporation into DNA. These dual fluorophore-quencher base analogues would be useful for site-specific DNA labeling and for monitoring the amplification products of target nucleic acid molecules with a specific sequence. We have demonstrated the utility of the fluorophore-linked Px substrates and the Ds-Px pairing in real-time quantitative PCR for target DNA molecule detection.  相似文献   

20.
A substantial fraction of mutations that arise in the cell comes from oxidative damage to DNA bases. Oxidation of purine bases at the 8-position, yielding 8-oxo-G and 8-oxo-A, results in conformational changes (from anti to syn) that cause miscoding during DNA replication. Here we describe the synthesis and biophysical and biochemical properties of low-polarity shape mimics of 8-oxopurines, and we report that these new analogues exhibit remarkable mimicry of the mutagenic properties of the natural damaged bases. A 2-chloro-4-fluoroindole nucleoside (1) was designed as an isosteric analogue of 8-oxo-dG, and a 2-chloro-4-methylbenzimidazole nucleoside (2) as a mimic of 8-oxo-dA. The nucleosides were prepared by reaction of the parent heterocycles with Hoffer's chlorodeoxyribose derivative. Structural studies of the free nucleosides 1 and 2 revealed that both bases are oriented syn, thus mimicking the conformation of the oxopurine nucleosides. Suitably protected phosphoramidite derivatives were prepared for incorporation into synthetic DNAs, to be used as probes of DNA damage responses, and 5'-triphosphate derivatives (3 and 4) were synthesized as analogues of damaged nucleotides in the cellular nucleotide pool. Base pairing studies in 12-mer duplexes showed that 1 and 2 have low affinity for polar pairing partners, consistent with previous nonpolar DNA base analogues. However, both compounds pair with small but significant selectivity for purine partners, consistent with the idea that the syn purine geometry leads to pyrimidine-like shapes. Steady-state kinetics studies of 1 and 2 were carried out with the Klenow fragment of Escherichia coli DNA Pol I (exo-) in single-nucleotide insertions. In the DNA template, the analogues successfully mimicked the mutagenic behavior of oxopurines, with 1 being paired selectively with adenine and 2 pairing selectively with guanine. The compounds showed similar mutagenic behavior as nucleoside triphosphate analogues, being preferentially inserted opposite mutagenic purine partners. The results suggest that much of the mutagenicity of oxopurines arises from their shapes in the syn conformation rather than from electrostatic and hydrogen-bonding effects. The new analogues are expected to be generally useful as mechanistic probes of cellular responses to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号