首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and composition of a phase-separated arachidic acid (C19H39COOH) (AA) and perfluorotetradecanoic acid (C13F27COOH) (PA) Langmuir-Blodgett monolayer film was characterized by several different types of atomic force microscopic measurements. At the liquid-air interface, surface pressure-area isotherms show that mixtures of the two acids follow the additivity rule expected from ideal mixtures. Topographic images of the deposited monolayer indicate that the surfactants are oriented normal to the substrate surface, and that the acids undergo phase separation to form a series of discontinuous, hexagonal domains separated by a continuous domain. A combination of lateral force (friction) imaging and adhesion force measurements show that the discontinuous domains are enriched in AA, whereas the surrounding continuous domain is a mixture of both AA and PA. This was further verified by selective, in situ dissolution of AA by n-hexadecane, followed by high-resolution topographical imaging of the discontinuous domains.  相似文献   

2.
The rate of domain growth in phase-separated, mixed Langmuir-Blodgett (LB) monolayers of arachidic acid, C(19)H(39)COOH (AA) and perfluorotetradecanoic acid, C(13)F(27)COOH (PA) was tracked via atomic force microscope measurements. The growth rate of domains comprised of phase-separated AA was consistent with that predicted by the Lifshitz-Slyozov model for diffusion-limited Ostwald ripening. In addition to Ostwald ripening, some evidence for domain coalescence was also observed when LB films were deposited under conditions of low temperature and short incubation times, though this tendency disappeared at higher deposition temperatures.  相似文献   

3.
The morphologies of phase-separated monolayer films prepared from two different binary mixtures of perfluorocarbons and hydrocarbons have been examined and compared, for the first time, at the solid-air and liquid-air interfaces. Films were comprised of binary mixtures of arachidic acid (C(19)H(39)COOH) with perfluorotetradecanoic acid (C(13)F(27)COOH) and of palmitic acid (C(15)H(31)COOH) with perfluorooctadecanoic acid (C(17)F(35)COOH). For both mixed systems, Langmuir Blodgett films on mica substrates consisted of polygonal domains of one surfactant dispersed in a continuous matrix of the other (arachidic acid in perfluorotetradecanoic acid or perfluorooctadecanoic acid in palmitic acid, respectively), consistent with previous reports. Real-time imaging of the air-water interface via Brewster angle microscopy revealed that comparable film morphology was present at the air-water interface and the solid-air interface over a wide range of surface pressures, and that for the arachidic acid-based mixture, domain growth dynamics at the air-water interface is consistent with that inferred from sequential "static" atomic force microscope images collected at the solid-air interface.  相似文献   

4.
The morphology and composition of phase-separated Langmuir and Langmuir-Blodgett films of stearic acid (C17H35COOH) (SA) mixed with perfluorotetradecanoic acid (C13F27COOH) (PA) have been investigated using a combination of atomic force microscopy (AFM) measurements and surface pressure-area isotherms. At elevated surface pressures, the mixed film phase-separated to form a distinct series of lines (ripples), as opposed to the hexagons that have previously been observed with mixed films with longer alkyl chain fatty acids. At low surface pressures, phase separation is still observed, though a range of different domain structures was formed. The chemical composition of the phase-separated domains has been investigated by AFM-based compositional mapping, which has allowed unambiguous identification of the chemical composition of the domains. A simple mechanistic model describing how domain formation takes place in this system is presented.  相似文献   

5.
Phase-separated Langmuir-Blodgett monolayer films prepared from mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were stained via spin-casting with the polarity sensitive phenoxazine dye Nile Red, and characterized using a combination of ensemble and single-molecule fluorescence microscopy measurements. Ensemble fluorescence microscopy and spectromicroscopy showed that Nile Red preferentially associated with the hydrogenated domains of the phase-separated films, and was strongly fluorescent in these areas of the film. These measurements, in conjunction with single-molecule fluorescence imaging experiments, also indicated that a small sub-population of dye molecules localizes on the perfluorinated regions of the sample, but that this sub-population is spectroscopically indistinguishable from that associated with the hydrogenated domains. The relative importance of selective dye adsorption and local polarity sensitivity of Nile Red for staining applications in phase-separated LB films as well as in cellular environments is discussed in context of the experimental results.  相似文献   

6.
Mixed monolayer surfactant films of perfluorotetradecanoic acid and the photopolymerizable diacetylene molecule 10,12-pentacosadiynoic acid were prepared at the air-water interface and transferred onto solid supports via Langmuir-Blodgett (LB) deposition. The addition of the perfluoroacid to the diacetylene surfactant results in enhanced stabilization of the monolayer in comparison with the pure diacetylene alone, allowing film transfer onto a solid substrate without resorting to addition of cations in the subphase or photopolymerization prior to deposition. The resulting LB films consisted of well-defined phase-separated domains of the two film components, and the films were characterized by a combination of atomic force microscope (AFM) imaging and fluorescence emission microscopy both before and after photopolymerization into the highly emissive "red form" of the polydiacetylene. Photopolymerization of the monolayer films resulted in the formation of diacetylene bilayers, which were highly fluorescent, with the apparent rate of photopolymerization and the fluorescence emission of the films being largely unaffected by the presence of the perfluoroacid.  相似文献   

7.
将铈β-二酮络合物(Ce(tmhd)4)的氯仿溶液与花生酸(AA)的氯仿溶液以不同摩尔比混合并铺展在纯水亚相上,得到其与AA的混合单分子膜.对混合单分子膜的成膜特性(π-A等温线和体系超额自由能)进行了探讨,发现混合单分子膜的超额自由能为负值,混合过程为热力学自发过程,且在配比为1∶ 2时其绝对值最大,体系最稳定,并进一步讨论了混合单分子膜可能的凝聚态结构.在配比为1∶ 2时,研究了混合单分子膜的静态弹性和动态弹性.  相似文献   

8.
由有机LB膜技术发展了一种制备组分、厚度可控的无机超薄陶瓷膜的方法.以Zr、 Y的β-二酮络合物的作为"表面离子"代替传统的亚相离子,沉积它们与花生酸的混合LB膜.并将它作为前驱物,经臭氧处理和热处理,成功制得了Y2O3稳定的立方相ZrO2超薄膜(YSZ).用X射线衍射(XRD)、 X射线光电子能谱(XPS)等手段研究了YSZ薄膜的相结构和其组成.结果表明,超薄陶瓷膜中Zr与Y的含量比率控制得很好,且形成Y2O3稳定的立方相ZrO2.说明这种方法可以成功地用来制备组分和膜厚均可控的纳米陶瓷膜.  相似文献   

9.
Here, we report a system we have developed where long double-stranded DNAs (dsDNAs) are immobilized on a monolayer of Zn-arachidate. We have applied the Langmuir-Blodgett technique to form the monolayer of Zn-arachidate where Zn(II) is bound to arachidic acid through charge neutralization. Because tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The DNA layer shows a typical compression and expansion cycle in a concentration-dependent fashion. Interestingly, the DNA monolayer is available for enzymatic degradation by DNaseI. The detection of DNA and its accessibility towards biological reaction is demonstrated by imaging through fluorescence microscopy. The conformation of the DNA, immobilized on the monolayer, was studied with the help of atomic force microscopy (AFM). We observed that the dsDNAs were aligned in a stretched manner on the surface. To investigate further, we also demonstrate here that the small single-stranded DNA (ssDNA) immobilized on the air-water interface can act as a target molecule for the complementary ssDNA present in the subphase. The study of DNA hybridization done with the help of fluorescence spectroscopy clearly supports the AFM characterization.  相似文献   

10.
Molecular interaction is very important for the mechanical properties and application of Langmuir films. In general, fatty acid film is stabilized by certain "subphase ions." In this work, two metal beta-diketonate complexes (M(tmhd)n, tmhd=2,2,6,6-tetramethyl-3,5-heptanedionate) were used as "surface ions" to form stable condensed films with different ratios at the air/water interface. The pi-A isotherms of the mixed films had been measured. The smaller molecular area of the metal beta-diketonate complexes indicated that the metal beta-diketonate complexes form multilayer condensed structures at high pressure at the air/water interface. However, arachidic acid (AA) retained a monolayer structure at high pressure in the mixed system. No considerable phase separations appeared during the compression of the mixed films, which indicated that the mixed films of metal beta-diketonate complexes and AA were miscible and stable. The molecular interaction of the two components in the mixed films was investigated in detail. Mixed systems with the mixing ratio of M(tmhd)n:AA=1:2 were chosen to study the effects of the interaction on the mechanical properties of the mixed films. The molecular interaction between AA and Ce(tmhd)4 is proved to be more significant than that between AA and Sr(tmhd)2, and the pi-A isotherms of the mixed films differ a lot from that of pure AA monolayer. Due to the strong intermolecular interaction, the liquid region disappears in the Ce(tmhd)4/AA mixed films, and dynamic elasticity is improved especially at high surface pressure. On the other hand, the interaction between the AA and the Sr(tmhd)2 is much weaker and the effects of the interaction on the properties (pi-A isotherm and dynamic elasticity) of the mixed films are not so significant, especially at low surface pressure. These results are in accordant with that of the UV spectra analyses.  相似文献   

11.
When dioctadecyl dimethylammonium bromide (DODAB) is compressed on a subphase containing 3,3'-disulfopropyl-5,5'-dichlorothiacyanine (THIAMS), adsorption of the dye to the DODAB monolayer results in the formation of J-aggregates which spontaneously organize into polygonal domains of micron size. The features of the domains depend on the surface pressure. The fluorescence of the individual domains is polarized. The shapes of the domains determined by fluorescence microscopy and atomic force microscopy (AFM) are identical. The domains differ however significantly from those observed after injection of a 3,3'-disulfopropyl-5,5'-dichloro-9-ethylthiacarbocyanine (THIATS) or THIAMS solution below a precompressed DODAB film, as well as from the domains observed upon compression of a DODAB monolayer on a subphase containing 10(-6) M THIATS.  相似文献   

12.
Langmuir-Blodgett (LB) films of the water-soluble dye phenosafranine (PS) have been prepared by its adsorption from aqueous dye solution to an arachidic acid (AA) monolayer at the air-water interface. Atomic force microscopy (AFM) images of the LB films revealed the effect of change in pH of deposition on the degree of complexation of AA with the PS dye. Well-defined circular islands and holes were observed which disappeared with the increase in pH. Polarized absorption studies indicated that the dye molecules are oriented uniaxially with their long axis titled at a constant angle to the surface normal of the LB film. Within the restricted geometry of the LB film, the PS dye was electropolymerized to form a two-dimensional film of poly(phenosafranine) sandwiched between arachidic acid layers. The film was characterized by IR spectroscopy, cyclic voltammetry, and AFM. X-ray diffraction studies reveal the presence of a layer structure in the AA-PS LB film before and after polymerization. The polymer film showed highly anisotropic electrical conductivity of ca. 10 orders of magnitude. This indicates the formation of two-dimensional polyPS layers between arachidic acid layers resulting in a layered heterostructure film having alternate conducting and insulating regions. Also, the conductivity of the polyPS prepared from LB film was found to be approximately 2.5 times higher than the conductivity of polyPS prepared by solution polymerization method.  相似文献   

13.
The membrane properties of the ganglioside GM1 (GM1)/dioleoylphosphatidylcholine (DOPC) binary system and GM1/dipalmitoylphosphatidylcholine (DPPC)/DOPC ternary system were investigated using surface pressure measurements and atomic force microscopy (AFM), and the effect of surface pressure on the properties of the membranes was examined. Mixed GM1/DPPC/DOPC monolayers were deposited on mica using the Langmuir-Blodgett technique for AFM. GM1 and DOPC were immiscible and phase-separated. The AFM image of the GM1/DOPC (1:1) monolayer showed island-like GM1 domains embedded in the DOPC matrix. There was no morphological change on varying surface pressure. The surface pressure-area isotherm of the GM1/DPPC/DOPC (2:9:9) monolayer showed a two-step collapse as in the DPPC/DOPC (1:1) monolayer. The AFM image for the GM1/DPPC/DOPC monolayer showed DPPC and GM1 domains in the DOPC matrix, and the DPPC-rich phase containing GM1 showed a percolation pattern the same as the GM1/DPPC (1:9) monolayer. The percolation pattern in the GM1/DPPC/DOPC monolayer changed as the surface pressure was varied. The surface pressure-responsive change in morphology of GM1 was affected by the surrounding environment, suggesting that the GM1 localized in each organ has a specific role.  相似文献   

14.
方堃  邹纲  吕卫星  何平笙 《化学学报》2002,60(7):1220-1224
以功能性的钌有机螯合物Ru(phen)_3~(2+)作为亚相离子,花生酸在亚相表面 上形成稳定的单分子膜。π-A等温线和动态弹性测量表明,此膜因花生酸与钌螯离 子发生了静电相互作用而有更大的可压缩性,并在固态区发生了分子聚集。用垂直 法成功地制备了嵌有Ru(phen)_3~(2+)离子的超薄有序Y-型LB膜。光谱实验表明, 所得LB膜是稳定、均匀的层状三明治结构,在层面内Ru(phen)_3~(2+)与花生酸结 合成相对稳定的分子基团形成了J-聚体。  相似文献   

15.
The surface pressure-area diagrams of double-chain fluorocarbon amphiphiles with different headgroup compositions show that the amphiphiles arrange almost perpendicularly to the water subphase and the structure of headgroups exerts significant influence on the amphiphile packing. Strong hydrogen bonding and weak electrostatic interaction favor the formation of stable monolayers. Perfluorooctanoic acid (FOA) cannot form monolayer at water/air interface and can only form liquid monolayer in subphase of calcium nitrate solution. Complete phase separation of palmitic acid and a fluorocarbon amphiphile with shorter hydrocarbon spacer group, 1, could be demonstrated in monolayers by using the phase rule of Crisp. The creation of phase-separated monolayers is possible when the monolayer is composed of a mixture of palmitic acid and a fluorocarbon amphiphile with longer hydrocarbon spacer group, 2. It can be suggested that the miscibility of hydrocarbon amphiphiles with fluorocarbon amphiphiles is determined by the hydrocarbon fraction of fluorocarbon amphiphiles.  相似文献   

16.
The formation of facets in domains of three monolayer systems, differing in molecular structure or headgroup charge, is observed by Brewster-angle microscopy under different experimental conditions. Arachidic acid forms faceted domains on increasing the pH of the subphase from pH 12.0 to 12.3 or by adding traces of cholesterol at pH 12.0. The degree of faceting is gradually varied in a mixture of 1-monopalmitoyl-rac-glycerol and 1-O-hexadecyl-rac-glycerol. The surface potentials of the pure substances were measured in order to determine the electrostatic forces in the mixture. Reversible faceting of domains of heptadecanoic acid methyl ester is observed within 2 °C near 30 °C. Faceting in monolayers is explained on the basis of fundamental forces that govern domain texture and shape, including line tension anisotropy and electrostatic repulsive forces. This explanation also accounts for the formation of dendrites along certain directions at domains of arachidic acid and the methyl ester. Received: 9 August 1999/Accepted in revised form: 24 August 1999  相似文献   

17.
This communication describes a spin-coating method to nucleate organic molecular rods of uniform size from an inorganic nanoparticle at a solid surface. The particle-rod hybrid structure spontaneously forms when a film is spin coated from a mixed 2-propanol solution of arachidic acid (AA) and nanoparticles of cadmium selenide capped by mercaptoundecanoic acid (MUA-CdSe) on graphite. AFM images show that MUA-CdSe nanoparticles nucleate single crystalline rods of AA with a cross section of a single unit cell of the C-form. The solution-based process potentially allows the precise tuning of the wetting profile of the solution on the surface-attached nanoparticle, which provides the reservoir for the growth of the single crystalline rods. The results suggest that nanoparticles can be regarded as nanoseeds for the nucleation of guest crystals. It should be possible to further functionalize the AA rods by electrostatic complexation with metal or organic ions.  相似文献   

18.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   

19.
表面活性素是一类具有较强表面活性的微生物脂肽类化合物,能在空气/水界面形成不溶性单分子膜.利用Langmuir膜天平测定了表面活性素单分子膜的压缩-扩张循环曲线,发现单分子膜在经历了“平台区”后出现较大的迟滞环,迟滞环的形状与亚相pH有关.将“平台区”的单分子膜转移到云母表面后,用原子力显微镜(AFM)和扫描电子显微镜(SEM)均观察到高度达几十至数百纳米的表面聚集体,说明表面活性素在单分子膜的“平台区”伴随着自聚集.研究结果表明,表面活性素单分子膜在空气/水界面的迟滞现象是分子浸入亚相和形成三维表面聚集体共同作用的结果.  相似文献   

20.
《Supramolecular Science》1996,3(1-3):123-130
(Alkylsilane/fluoroalkylsilane) mixed monolayers were immobilized covalently on a silicon wafer surface with stable surface structure. Atomic force microscopic observation of the n-octadecyltrichlorosilane (OTS)/[2-(perfluorooctyl)ethyl]trichlorosilane (FOETS) mixed monolayer revealed that the crystalline OTS circular domains of ca. 1–2μm in diameter were surrounded by a sealike amorphous FOETS matrix, even though the molar fraction of OTS was above 75%. Also, the phaseseparated monolayer can be prepared from FOETS, and a non-polymerizable and crystallizable amphiphile such as lignoceric acid (LA). The phase separation of the (alkylsilane/fluoroalkylsilane) mixed monolayer might be attributed to both faster spreading of FOETS molecules on the water surface and the crystallizable characteristics of alkylsilane molecules. The mixed monolayer of crystalline alkylsilane (OTS) and amorphous alkylsilane (n-dodecyltrichlorosilane, DDTS) formed a phase-separated structure on the water surface because of the crystallizable characteristics of OTS. Lateral force microscopic (LFM) observation revealed that the order of the magnitude of lateral force generated against the silicon nitride tip was: n-triacontyltrichlorosilane (TATS) domain with longer alkyl chain > amorphous FOETS matrix > crystalline OTS domain. On the other hand, scanning viscoelasticity microscopic observation revealed that the order of the magnitude of modulus was: Si substrate > crystalline OTS domain > amorphous FOETS matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号