首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A refined sample preparation procedure for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was developed for the evaluation of the degree of substitution (DS) in partially depolymerised carboxymethyl cellulose (CMC). By adding ammonium sulphate to the sample mixture prior to the analysis, good quality mass spectra could be acquired. The usual time-consuming search for 'sweet-spots' at the crystalline rim of the MALDI target spot was also avoided. This quality improvement made it possible to investigate whether various positions on the target spot generated mass spectra in which the measured DS varied. The accuracy and reproducibility of the sample preparation procedure were tested by applying it on three commercial CMCs. The study shows that the DS values that were calculated from the spectra acquired from the centre region of the MALDI target spot were in better agreement with the DS provided by the supplier than were the values obtained from the large crystals at the target spot rim. This observation could be one reasonable explanation for the higher DS values reported in other publications. By applying our refined MALDI sample preparation procedure DS values that were in good agreement with the values provided by the manufacturer could be obtained. This indicates that MALDI-TOFMS of partially depolymerised CMCs can be used for an estimation of the DS as a complement to the more established methods, e.g. NMR, titrimetry, and chromatographic techniques.  相似文献   

2.
Matrix-assisted laser desorption/ionization (MALDI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses are compared to gain insight into some of the details of sample preparation for MALDI analysis of synthetic polymers. ToF-SIMS imaging of MALDI samples shows segregation of the cationization agent from the matrix crystals. The amount of observed segregation can be controlled by the sample preparation technique. Electrospray sample deposition minimizes segregation. Comparing ToF-SIMS and MALDI mass spectra from the same samples confirms that ToF-SIMS is significantly more surface sensitive than MALDI. This comparison shows that segregation of the oligomers of a polymer sample can occur during MALDI sample preparation. Our data indicate that MALDI is not as sensitive to those species dominating the sample surface as to species better incorporated into the matrix crystals. Finally, we show that matrix-enhanced SIMS can be an effective tool to analyze synthetic polymers, although the sample preparation conditions may be different than those optimized for MALDI.  相似文献   

3.
A variety of derivatized fullerenes have been studied by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Of particular emphasis has been the evaluation of a recently introduced solvent-free sample/target preparation method. Solvent-free MALDI is particularly valuable in overcoming adverse solvent-related effects, such as insolubility and/or degradation of the sample. The method was applied to fullerene derivatives susceptible to decomposition under insufficiently "soft" MALDI conditions. Analytes included the hydrofullerene: C(60)H(36), fluorofullerenes: C(60)F(x) where x = 18, 36, 46, 48 and C(70)F(x) where x = 54, 56, methano-bridged amphiphilic ligand adducts to C(60) and the [4 + 2] cycloadduct of tetracene to C(60). The new solvent-free sample preparation is established as an exceedingly valuable addition to the repertoire of preparation protocols within MALDI. The MALDI mass spectra were of very high quality throughout, providing a testimony that "soft" MALDI conditions could be achieved. Using the [4 + 2] cycloadduct of tetracene to C(60) as the model analyte for direct comparison with solvent-based MALDI, the solvent-free approach led to less fragmentation and more abundant analyte ions. Applying solvent-free sample preparation, different matrix compounds have been examined for use in the MALDI of derivatized fullerenes, including sulfur, tetracyanoquinodimethane (TCNQ), 9-nitroanthracene (9-NA) and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2- propenylidene]malononitrile (DCTB). DCTB was confirmed as the best performing matrix, reducing unwanted decomposition and suppression effects.  相似文献   

4.
The application of an internal standard in quantitative analysis is desirable in order to correct for variations in sample preparation and instrumental response. In mass spectrometry of organic compounds, the internal standard is preferably labelled with a stable isotope, such as 18O, 15N or 13C. In this study, a method for the quantification of fructo-oligosaccharides using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS) was proposed and tested on raftilose, a partially hydrolysed inulin with a degree of polymeration 2-7. A tetraoligosaccharide nystose, which is chemically identical to the raftilose tetramer, was used as an internal standard rather than an isotope-labelled analyte. Two mathematical approaches used for data processing, conventional calculations and artificial neural networks (ANN), were compared. The conventional data processing relies on the assumption that a constant oligomer dispersion profile will change after the addition of the internal standard and some simple numerical calculations. On the other hand, ANN was found to compensate for a non-linear MALDI response and variations in the oligomer dispersion profile with raftilose concentration. As a result, the application of ANN led to lower quantification errors and excellent day-to-day repeatability compared to the conventional data analysis. The developed method is feasible for MS quantification of raftilose in the range of 10-750 pg with errors below 7%. The content of raftilose was determined in dietary cream; application can be extended to other similar polymers. It should be stressed that no special optimisation of the MALDI process was carried out. A common MALDI matrix and sample preparation were used and only the basic parameters, such as sampling and laser energy, were optimised prior to quantification.  相似文献   

5.
Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, “gut-feeling” or “good enough” is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.  相似文献   

6.
In this study, we developed a novel microwave-assisted protein preparation and digestion method for matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry analysis and identification of proteins that involves using conductive carbon tape as a sample platform for sample preparation (reduction and alkylation) and digestion under microwave heating and as a plate for MALDI analysis. This method allows for the enzymatic digestion products of proteins to be directly analyzed by MALDI mass spectrometry and results in a marked reduction in sample loss. Our protocol requires only a small volume (1 μL) of reaction solvent, which increases the frequency of enzyme-to-protein contact, thereby resulting in more efficient digestion of sample than conventional in-solution digestion methods. To test this protocol, we used magnetic iron (II, III) oxide nanoparticles as concentrating probes to enrich phosphopeptides from a mixture of peptides in enzymatically digested protein samples. We found that the one-pot on-tape-based protein preparation and digestion under microwave heating combined with the on-tape-based enrichment method not only dramatically reduced the time required for phosphopeptides analysis but also allowed for the simultaneous identification of phosphoproteins. The advantages of our protocol include ease of use, high digestion efficiency, high specificity, and rapid (15 min) identification of proteins and enrichment of phosphopeptides in a mixture of enzymatically digested protein samples.  相似文献   

7.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging is a technique that provides the ability to identify and characterize endogenous and exogenous compounds spatially within tissue with relatively little sample preparation. While it is a proven methodology for qualitative analysis, little has been reported for its utility in quantitative measurements. In the current work, inherent challenges in MALDI quantification are addressed. Signal response is monitored over successive analyses of a single tissue section to minimize error due to variability in the laser, matrix application, and sample inhomogeneity. Methods for the application of an internal standard to tissue sections are evaluated and used to quantify endogenous lipids in nerve tissue. A precision of 5% or less standard error was achieved, illustrating that MALDI imaging offers a reliable means of in situ quantification for microgram-sized samples and requires minimal sample preparation.  相似文献   

8.
Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum requires optimized, reproducible methods for handling and deposition of protein samples. Data acquisition in MALDI MS is also a critical issue, since heterogeneity of sample deposits leads to attenuation of ion signals in MALDI MS. In order to improve the robustness and reproducibility of MALDI MS for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard to chromatographic properties; reversed phase (C8, C18, SDB-XC), ion-exchange (anion, weak cation, mixed-phase (SDB-RPS)) and magnetic beads were tested with regard to chromatographic properties; reversed phase (C8) or affinity chromatography (Cu-IMAC). The reproducibility of each sample preparation method was determined by enumeration and analysis of protein signals that were detected in at least six out of nine spectra obtained by three triplicate analyses of one serum sample.A candidate for best overall performance as evaluated by the number of peaks generated and the reproducibility of mass spectra was found among the tested methods. Up to 418 reproducible peaks were detected in one cancer serum sample. These protein peaks can be part of a possible diagnostic profile, suggesting that this sample preparation method and data acquisition approach is suitable for large-scale analysis of serum samples for protein profiling.  相似文献   

9.
This paper focuses on the development of MALDI sample preparation protocols for the analysis of a bioactive beta-(1 --> 3) polysaccharide, i.e. Curdlan. The crude Curdlan sample was first separated into a low molecular weight water-soluble portion and a high molecular weight water-insoluble portion. The water-soluble portion was analyzed using a standard MALDI sample preparation method developed for dextran analysis. Two low-mass (<4000 Da) polysaccharide distributions differing by 16 Da were observed. For the analysis of the water-insoluble portion, several sample preparation protocols were evaluated using GPC-fractionated samples. A sample preparation method based on the deposition of the analyte solution with a mixture of 2,5-dihydroxybenzoic acid (DHB) and 3-aminoquinoline (3AQ) matrices in dimethyl sulfoxide (DMSO) at elevated temperature of 70 degrees C was found to reliably produce good MALDI spectra. MALDI analysis of the water-insoluble Curdlan portion gave number-average (Mn) and weight-average (Mw) molecular weights and polydispersity of 8000 Da, 8700 Da, and 1.10, respectively.  相似文献   

10.
Although electrospray sample deposition in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) sample preparation increases the repeatability of both the MALDI signal intensity and the measured molecular mass distribution (MMD), the electrospray sample deposition method may influence the apparent MMD of a synthetic polymer. The MMDs of three polymers of differing thermal stability, polystyrene (PS), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG), were studied by MALDI time-of-flight (TOF) MS as the electrospray deposition voltage was varied. The MMDs obtained using the electrospray deposition method were compared with those obtained for hand-spotted samples. No change was observed in the measured polymer MMD when the electrospray deposition voltage was varied in the analysis of PS, but those of PEG and PPG changed at higher electrospray voltages due to increased ion fragmentation. It was also shown that the fragmentation in the hand-spotted samples is dependent on the matrix used in sample preparation.  相似文献   

11.
A limitation of any current approach using solvent-free MALDI mass spectrometry is that only one sample at a time can be prepared and transferred to the MALDI-plate. For this reason, multiple-sample preparation approaches for solvent-free MALDI MS analysis of synthetic polymers were developed that are simple and practical. One approach multiplexed sample preparation by simultaneously preparing multiple samples. With this approach, as many as 384 samples could be prepared by addition of analyte, matrix, salt, and 1-mm metal beads to each well of a 384-well disposable bacti plate, capping the plate with the lid and homogenizing all samples simultaneously using a common laboratory vortex device. Besides the time savings achieved by a single vortex step for multiple samples, an additional advantage of this method relative to previously reported solvent-free preparation methods is that the mixing volume per sample is reduced, which allows a reduction in the amount of analyte required. This method, however, still requires the transfer of each homogenized sample to the MALDI plate for subsequent analysis. Here we report a novel approach that combines multiple simultaneous solvent-free sample preparation with automatic sample transfer to the MALDI target plate. This approach reduces the possibility of cross-contamination, the amount of sample and matrix consumed for an analysis, and the time required for preparation of multiple samples. These methods were shown to provide high-quality mass spectra for various synthetic polymer standards with M(n) values to 10 kDa. The methods are efficient in that small sample amounts are required, the sample/salt/matrix ratio is not critical, and the time necessary to achieve sufficient homogenization of multiple samples is less than 5 min.  相似文献   

12.
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC‐MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3‐μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single‐pot solid‐phase‐enhanced sample preparation (SP3) method and analyzed by LC‐MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post‐translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.  相似文献   

13.
Close deposition of the sample and external standard was used in axial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to achieve mass accuracy equivalent to that obtained with an internal standard across the entire MALDI plate. In this work, the sample and external standard were deposited by continuous deposition in separate traces, each approximately 200 micro m wide. The dependence of the mass accuracy on the distance between the sample and standard traces was determined across a MALDI target plate with dimensions of 57.5 mm x 57.0 mm by varying the gap between the traces from 100 micro m to 4 mm. During acquisition, two adjacent traces were alternately irradiated with a 200-Hz laser, such that the peaks in the resulting mass spectra combined the sample and external standard. Ion suppression was not observed even when the peptide concentrations in the two traces differed by more than two orders of magnitude. The five peaks from the external standard trace were used in a four-term mass calibration of the masses of the sample trace. The average accuracy across the whole plate with this method was 5 ppm when peaks of the sample trace had signal-to-noise ratios of at least 30 and the gap between the traces was approximately 100 micro m. This approach was applied to determining peptide masses of a reversed-phase liquid chromatographic (LC) separation of a tryptic digest of beta-galactosidase deposited as a long serpentine trace across the MALDI plate, with accuracy comparable to that obtainable using internal calibration. In addition, the eluent from reversed-phase LC separation of a strong cation-exchange fraction containing tryptic peptides from a yeast lysate along with the closely placed external standard was deposited on the MALDI plate. The data obtained in the MS and MS/MS modes on a MALDI-TOF/TOF mass spectrometer were combined and used in database searching with MASCOT. Since the significant score is a function of mass accuracy in the MS mode, database searching with high mass accuracy reduced the number of false positives and also added peptides which otherwise would have been eliminated at lower mass accuracy (false negatives).  相似文献   

14.
Extending the solvent-free MALDI sample preparation method   总被引:1,自引:0,他引:1  
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.  相似文献   

15.
We investigated a variant of desorption/ionization on porous silicon (DIOS) mass spectrometry utilizing an aqueous suspension of either porous silica gel or porous alumina (pore size of 60 and 90 A, respectively). Laser desorption/ionization (LDI) from samples directly deposited on a stainless steel surface without any inorganic substrates was also achieved. Synthetic peptides designed to cover large sequence diversity constituted our model compounds. Sample preparation, including material conditioning, peptide solubilization, and deposition protocol onto standard matrix-assisted laser desorption/ionization (MALDI) probe, as well as ionization source tuning were optimized to perform sensitive reproducible LDI analyses. The addition of either a cationizing agent or an alkali metal scavenger to the sample suspension allowed modification of the ionization output. Comparing hydrophilic silica gel to hydrophobic reversed-phase silica gel as well as increasing material pore size provided further insights into desorption/ionization processes. Furthermore, mixtures of peptides were analyzed to probe the spectral suppression phenomenon when no interfering organic matrix was present. The results gathered from synthetic peptide cocktails indicated that LDI mass spectrometry on silica gel or alumina constitutes a promising complementary method to MALDI in proteomics for peptide mass fingerprinting.  相似文献   

16.
In this study we report an improved protocol that combines simplified sample preparation and micro-scale separation for mass spectrometric analysis of neuropeptides from individual neuroendocrine organs of crab Cancer borealis. A simple, one-step extraction method with commonly used matrix-assisted laser desorption/ionization (MALDI) matrix, 2,5-dihydroxybenzoic acid (DHB), in saturated aqueous solution, is employed for improved extraction of neuropeptides. Furthermore, a novel use of DHB as background electrolyte for capillary electrophoresis (CE) separation in the off-line coupling of CE to MALDI-Fourier transform mass spectrometric (FT-MS) detection is also explored. The new CE electrolyte exhibits full compatibility with MALDI-MS analysis of neuropeptides in that both the peptide extraction process and MALDI detection utilize DHB. In addition, enhanced resolving power and improved sensitivity are also observed for CE-MALDI-MS of peptide mixture analysis. Collectively, the use of DHB has simplified the extraction and reduced the sample loss by elimination of homogenizing, drying, and desalting processes. In the mean time, the concurrent use of DHB as CE separation buffer and subsequent MALDI matrix offers improved spectral quality by eliminating the interferences from typical CE electrolyte in MALDI detection.  相似文献   

17.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

18.
Lens crystallin proteins make up 90% of expressed proteins in the ocular lens and are primarily responsible for maintaining lens transparency and establishing the gradient of refractive index necessary for proper focusing of images onto the retina. Age‐related modifications to lens crystallins have been linked to insolubilization and cataractogenesis in human lenses. Matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been shown to provide spatial maps of such age‐related modifications. Previous work demonstrated that, under standard protein IMS conditions, α‐crystallin signals dominated the mass spectrum and age‐related modifications to α‐crystallins could be mapped. In the current study, a new sample preparation method was optimized to allow imaging of β‐ and γ‐crystallins in ocular lens tissue. Acquired images showed that γ‐crystallins were localized predominately in the lens nucleus whereas β‐crystallins were primarily localized to the lens cortex. Age‐related modifications such as truncation, acetylation, and carbamylation were identified and spatially mapped. Protein identifications were determined by top‐down proteomics analysis of lens proteins extracted from tissue sections and analyzed by LC‐MS/MS with electron transfer dissociation. This new sample preparation method combined with the standard method allows the major lens crystallins to be mapped by MALDI IMS.  相似文献   

19.
A new instrument and method is described for laterally resolved mass spectrometric surface analysis. Fields of application are in both the life sciences and the material sciences. The instrument provides for imaging of the distribution of selected sample components from natural and artificial surfaces. Samples are either analyzed by laser desorption ionization (LDI) time-of-flight mass spectrometry or, after preparation with a suitable matrix, by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Areas of 100 x 100 microm are scanned with minimal increments of 0.25 microm, and between 10,000 and 160,000 mass spectra are acquired per image within 3 to 50 min (scan rate up to 50 pixels per s). The effective lateral resolution is in the range of 0.6 to 1.5 microm depending on sample properties, preparation methods and laser wavelength. Optical investigation of the same sample area by UV confocal scanning laser microscopy was found to be very attractive in combination with scanning MALDI mass analysis because pixel-identical images can be created with both techniques providing for a strong increase in analytical information. This article describes the method and instrumentation, including first applicational examples in elemental analysis, imaging of pine tree roots, and investigation of MALDI sample morphology in biomolecular analysis.  相似文献   

20.
The development of reliable sample preparation methods has been critical to the success of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry experiments. Good MALDI sample preparation for polymers involves choosing the solvent system, the matrix, and the ionization agent correctly, and combining them in a manner that will lead to a sample that will produce the desired ions. The vast diversity of chemistry available in industrial polymers has challenged our ability to design reliable sample preparation methods. In the experiments reported here, we show that matrix-enhanced secondary ion mass spectrometry (MESIMS) is an effective analytical technique to explore sample segregation in solid phase MALDI samples. Qualitative comparison of MESIMS and MALDI results for polymer samples prepared with multiple matrices aids our investigation of the solid-phase solubility of a variety of low molecular weight polymer materials. Including the solid-phase solubility with the liquid-phase solubility of the polymer samples and the matrices enables the construction of a relative solubility chart, which shows the best solubility matches between the polymer and matrix materials for MALDI experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号