共查询到20条相似文献,搜索用时 0 毫秒
1.
Aziz Ghoufi Pierre Archirel Jean-Pierre Morel Nicole Morel-Desrosiers Anne Boutin Patrice Malfreyt 《Chemphyschem》2007,8(11):1648-1656
We report potential of mean force (PMF) calculations on the interaction between the p-sulfonatocalix[4]arene and a monovalent cation (Cs(+)). It has been recently shown from microcalorimetry and (133)Cs NMR experiments that the association with Cs(+) is governed by favourable cation-pi interactions and is characterized by the insertion of the cation into the cavity of the macrocycle. We show that the PMF calculation based upon a classical model is not able to reproduce both the thermodynamic properties of association and the insertion of the cation. In order to take into account the different contributions of the cation-pi interactions, we develop a new methodology consisting of changing the standard PMF by an additional contribution resulting from quantum calculations. The calculated thermodynamic properties of association are thus in line with the microcalorimetry and (133)Cs NMR experiments and the structure of the complex at the Gibbs free-energy minimum shows the insertion of the cation into the cavity of the calixarene. 相似文献
2.
3.
Laura J. Kingsley Juan Esquivel‐Rodríguez Ying Yang Daisuke Kihara Markus A. Lill 《Journal of computational chemistry》2016,37(20):1861-1865
Crystallization of protein–protein complexes can often be problematic and therefore computational structural models are often relied on. Such models are often generated using protein–protein docking algorithms, where one of the main challenges is selecting which of several thousand potential predictions represents the most near‐native complex. We have developed a novel technique that involves the use of steered molecular dynamics (sMD) and umbrella sampling to identify near‐native complexes among protein–protein docking predictions. Using this technique, we have found a strong correlation between our predictions and the interface RMSD (iRMSD) in ten diverse test systems. On two of the systems, we investigated if the prediction results could be further improved using potential of mean force calculations. We demonstrated that a near‐native (<2.0 Å iRMSD) structure could be identified in the top‐1 ranked position for both systems. © 2016 Wiley Periodicals, Inc. 相似文献
4.
Dr. Manjeet Kumar Dr. Thomas Simonson Dr. Gilles Ohanessian Dr. Carine Clavaguéra 《Chemphyschem》2015,16(3):658-665
The association of Mg2+ and H2PO4? in water can give insights into Mg:phosphate interactions in general, which are very widespread, but for which experimental data is surprisingly sparse. It is studied through molecular dynamics simulations (>100 ns) by using the polarizable AMOEBA force field, and the association free energy is computed for the first time. Explicit consideration of outer‐sphere and two types of inner‐sphere association provides considerable insight into the dynamics and thermodynamics of ion pairing. After careful assessment of the computational approximations, the agreement with experimental values indicates that the methodology can be extended to other inorganic and biological Mg:phosphate interactions in solution. 相似文献
5.
A method of statistical estimation is applied to the problem of one-dimensional internal rotation in a hindering potential of mean force. The hindering potential, which may have a completely general shape, is expanded in a Fourier series, the coefficients of which are estimated by fitting an appropriate statistical-mechanical distribution to the random variable of internal rotation angle. The function of reduced moment of inertia of an internal rotation is averaged over the thermodynamic ensemble of atomic configurations of the molecule obtained in stochastic simulations. When quantum effects are not important, an accurate estimate of the absolute internal rotation entropy of a molecule with a single rotatable bond is obtained. When there is more than one rotatable bond, the "marginal" statistical-mechanical properties corresponding to a given internal rotational degree of freedom are reduced. The method is illustrated using Monte Carlo simulations of two public health relevant halocarbon molecules, each having a single internal-rotation degree of freedom, and a molecular dynamics simulation of an immunologically relevant polypeptide, in which several dihedral angles are analyzed. 相似文献
6.
The potentials of mean force (PMFs) were determined for systems forming cationic and anionic homocomplexes composed of acetic acid, phenol, isopropylamine, n-butylamine, imidazole, and 4(5)-methylimidazole, and their conjugated bases or acids, respectively, in three solvents with different polarity and hydrogen-bonding propensity: acetonitrile (AN), dimethyl sulfoxide (DMSO), and water (H(2)O). For each pair and each solvent a series of umbrella-sampling molecular dynamics simulations with the AMBER force field, explicit solvent, and counterions added to maintain a zero net charge of a system were carried out and the PMF was calculated by using the Weighted Histogram Analysis Method (WHAM). Subsequently, homoconjugation-equilibrium constants were calculated by numerical integration of the respective PMF profiles. In all cases but imidazole stable homocomplexes were found to form in solution, which was manifested as the presence of contact minima corresponding to hydrogen-bonded species in the PMF curves. The calculated homoconjugation constants were found to be greater for complexes with the OHO bridge (acetic acid and phenol) than with the NHN bridge and they were found to decrease with increasing polarity and hydrogen-bonding propensity of the solvent (i.e., in the series AN > DMSO > H(2)O), both facts being in agreement with the available experimental data. It was also found that interactions with counterions are manifested as the broadening of the contact minimum or appearance of additional minima in the PMF profiles of the acetic acid-acetate, phenol/phenolate system in acetonitrile, and the 4(5)-methylimidazole/4(5)-methylimidzole cation conjugated base system in dimethyl sulfoxide. 相似文献
7.
John B. O. Mitchell Roman A. Laskowski Alexander Alex Janet M. Thornton 《Journal of computational chemistry》1999,20(11):1165-1176
We have developed BLEEP (biomolecular ligand energy evaluation protocol), an atomic level potential of mean force (PMF) describing protein–ligand interactions. The pair potentials for BLEEP have been derived from high-resolution X-ray structures of protein–ligand complexes in the Brookhaven Protein Data Bank (PDB), with a careful treatment of homology. The use of a broad variety of protein–ligand structures in the derivation phase gives BLEEP more general applicability than previous potentials, which have been based on limited classes of complexes, and thus represents a significant step forward. We calculate the distance distributions in protein–ligand interactions for all 820 possible pairs that can be chosen from our set of 40 different atom types, including polar hydrogen. We then use a reverse Boltzmann methodology to convert these into energy-like pair potential functions. Two versions of BLEEP are calculated, one including and one excluding interactions between protein and water. The pair potentials are found to have the expected forms; polar and hydrogen bonding interactions show minima at short range, around 3.0 Å, whereas a typical hydrophobic interaction is repulsive at this distance, with values above 4.0 Å being preferred. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1165–1176, 1999 相似文献
8.
Recently, the GROMOS biomolecular force field parameter set 53A6--which has been parametrized to reproduce experimentally determined free enthalpies of hydration and solvation in cyclohexane of amino acid side-chain analogs--was presented. To investigate the transferability of the new parameter set, we calculated free enthalpies of solvation of a range of polar and apolar compounds in different solvents (methanol, dimethyl sulfoxide (DMSO), acetonitrile, and acetone) from molecular dynamics simulations using the GROMOS 53A6 force field. For methanol and DMSO, parameters were used that are available in the 53A6 parameter set. For acetonitrile, a recently developed model was taken and for acetone, two models available in literature were used. We found that trends in and values for the solvation free enthalpies are in satisfactory agreement with experiment, except for the solvation in acetone for which deviations from experiment can be explained in terms of the properties of the models used. 相似文献
9.
Benjamin Waldher Jadwiga Kuta Samuel Chen Neil Henson Aurora E. Clark 《Journal of computational chemistry》2010,31(12):2307-2316
The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under UNIX and is written in C++, is an easy‐to‐use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field, and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
10.
Net charge changes in the calculation of relative ligand‐binding free energies via classical atomistic molecular dynamics simulation 下载免费PDF全文
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 相似文献
11.
K. Vanommeslaeghe E. Hatcher C. Acharya S. Kundu S. Zhong J. Shim E. Darian O. Guvench P. Lopes I. Vorobyov A. D. Mackerell Jr. 《Journal of computational chemistry》2010,31(4):671-690
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
12.
13.
14.
The relative binding free energies in HIV protease of haloperidol thioketal (THK) and three of its derivatives were examined with free energy calculations. THK is a weak inhibitor (IC50 = 15 M) for which two cocrystal structures with HIV type 1 proteases have been solved [Rutenber, E. et al., J. Biol. Chem., 268 (1993) 15343]. A THK derivative with a phenyl group on C2 of the piperidine ring was expected to be a poor inhibitor based on experiments with haloperidol ketal and its 2- phenyl derivative (Caldera, P., personal communication). Our calculations predict that a 5-phenyl THK derivative, suggested based on examination of the crystal structure, will bind significantly better than THK. Although there are large error bars as estimated from hysteresis, the calculations predict that the 5-phenyl substituent is clearly favored over the 2-phenyl derivative as well as the parent compound. The unfavorable free energies of solvation of both phenyl THK derivatives relative to the parent compound contributed to their predicted binding free energies. In a third simulation, the change in binding free energy for 5-benzyl THK relative to THK was calculated. Although this derivative has a lower free energy in the protein, its decreased free energy of solvation increases the predicted G(bind) to the same range as that of the 2-phenyl derivative. 相似文献
15.
The parallel tempering simulation method was recently extended to allow for possible exchanges between non‐adjacent replicas. We introduce a multiple‐exchange variant which naturally incorporates the information from all replicas when calculating statistical averages, building on the related virtual‐move method of Coluzza and Frenkel (ChemPhysChem 2005 , 6, 1779). The method is extensively tested on three model systems, namely, a Lennard‐Jones cluster exhibiting a finite size phase transition, the Lennard‐Jones fluid, and the 2D ferromagnetic Ising model. In all cases, the present method performs significantly better and converges faster than conventional parallel tempering Monte Carlo simulations. The standard deviations are also systematically decreased with respect to virtual moves. 相似文献
16.
The free energy landscapes of peptide conformations were calibrated by ab initio quantum chemical calculations, after the enhanced conformational diversity search using the multicanonical molecular dynamics simulations. Three different potentials of mean force for an isolated dipeptide were individually obtained by the multicanonical molecular dynamics simulations using the conventional force fields, AMBER parm94, AMBER parm96, and CHARMm22. Each potential of mean force was then calibrated based upon the umbrella sampling algorithm from the adiabatic energy map that was calculated separately by the ab initio molecular orbital method, and all of the calibrated potentials of mean force coincided well. The calibration method was also applied to the simulations of a peptide dimer in explicit water models, and it was shown that the calibrated free energy landscapes did not depend on the force field used in the classical simulations, as far as the conformational space was sampled well. The current calibration method fuses the classical free energy calculation with the quantum chemical calculation, and it should generally make simulations for biomolecular systems much more reliable when combining with enhanced conformational sampling. 相似文献
17.
An important task of biomolecular simulation is the calculation of relative binding free energies upon chemical modification of partner molecules in a biomolecular complex. The potential of mean force (PMF) along a reaction coordinate for association or dissociation of the complex can be used to estimate binding affinities. A free energy perturbation approach, termed umbrella sampling (US) perturbation, has been designed that allows an efficient calculation of the change of the PMF upon modification of a binding partner based on the trajectories obtained for the wild type reference complex. The approach was tested on the interaction of modified water molecules in aqueous solution and applied to in silico alanine scanning of a peptide‐protein complex. For the water interaction test case, excellent agreement with an explicit PMF calculation for each modification was obtained as long as no long range electrostatic perturbations were considered. For the alanine scanning, the experimentally determined ranking and binding affinity changes upon alanine substitutions could be reproduced within 0.1–2.0 kcal/mol. In addition, good agreement with explicitly calculated PMFs was obtained mostly within the sampling uncertainty. The combined US and perturbation approach yields, under the condition of sufficiently small system modifications, rigorously derived changes in free energy and is applicable to any PMF calculation. © 2014 Wiley Periodicals, Inc. 相似文献
18.
Irene Nobeli John B. O. Mitchell Alexander Alex Janet M. Thornton 《Journal of computational chemistry》2001,22(7):673-688
The Biomolecular Ligand Energy Evaluation Protocol (BLEEP) is a knowledge‐based potential derived from high‐resolution X‐ray structures of protein–ligand complexes. The performance of this potential in ranking the hypothetical structures resulting from a docking study has been evaluated using fifteen protein–ligand complexes from the Protein Data Bank. In the majority of complexes BLEEP was successful in identifying the native (experimental) binding mode or an alternative of low rms deviation (from the native) as the lowest in energy. Overall BLEEP is slightly better than the DOCK energy function in discriminating native‐like modes. Even when alternative binding modes rank lower than the native structure, a reasonable energy is assigned to the latter. Breaking down the BLEEP scores into the atom–atom contributions reveals that this type of potential is grossly dominated by longer range interactions (>5 Å), which makes it relatively insensitive to small local variations in the binding site. However, despite this limitation, the lack, at present, of accurate protein–ligand potentials means that BLEEP is a promising approach to improve the filtering of structures resulting from docking programs. Moreover, BLEEP should improve with the continuously increasing number of complexes available in the PDB. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 673–688, 2001 相似文献
19.
Di‐ and tri‐phosphate nucleotides are essential cofactors for many proteins, usually in an Mg2+‐bound form. Proteins like GTPases often detect the difference between NDP and NTP and respond by changing conformations. To study such complexes, simple, fixed charge force fields have been used, which allow long simulations and precise free energy calculations. The preference for NTP or NDP binding depends on many factors, including ligand structure and Mg2+ coordination and the changes they undergo upon binding. Here, we use a simple force field to examine two Mg2+ coordination modes for the unbound GDP and GTP: direct, or “Inner Sphere” (IS) coordination by one or more phosphate oxygens and indirect, “Outer Sphere” (OS) coordination involving one or more bridging waters. We compare GTP: and GDP:Mg binding with OS and IS coordination; combining the results with experimental data then indicates that GTP prefers the latter. We also examine different kinds of IS coordination and their sensitivity to a key force field parameter: the optimal Mg:oxygen van der Waals distance Rmin. Increasing Rmin improves the Mg:oxygen distances, the GTP: and GDP:Mg binding affinities, and the fraction of GTP:Mg with β + γ phosphate coordination, but does not improve or change the GTP/GDP affinity difference, which remains much larger than experiment. It has no effect on the free energy of GDP binding to a GTPase. © 2012 Wiley Periodicals, Inc. 相似文献