共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
采用Nb管和高Sn含量的Cu-Sn,Cu-Sn-Ti,Cu-Sn-In合金之间的内扩散法制备了Nb_3Sn多芯超导复合线,研究了Nb_3Sn反应扩散热处理条件和添加元素Ti、In对Nb_3Sn反应层生长动力学、组织结构和超导性能的影响。结果表明:母材中添加适量的第三元素Ti或In均提高Nb_3Sn反应层生长速率,与In相比,Ti的效果更为显著.添Ti样品的T_c值在母材添Ti量为0.4w/o处出现峰值,比末添Ti样品的T_c值升高0.3K.添Ti样品的H_(c2)(o)值随母材添Ti量增加单调提高,当母材添Ti量为0.76w/o时,其H_(c2)(o)值由未添Ti样品的21T提高到大约29T.在4.2K和15T脉冲背景磁场(脉冲上升时间t_m=10ms)下,添Ti和添In样品的J_c(non Cu)值分别可达6×10~4Acm~(-2)和2.5×10~4Acm~(-2). 相似文献
5.
6.
7.
8.
本文报道了适量的细颗粒Ti元素粉末添加于初始Cu和Nb粉末混合体中,改善了粉末冶金准连续多纤维Nb_3Sn复合导体的高场临界电流密度. 相似文献
9.
10.
我们测量了Nb_3Sn从4.2K到273K的绝对热电势率,结果表明在18 K以上,Nb_3Sn的热电势率都是正的.在60K左右,观察到由于声子曳引引起的平坦的峰.第一次观察到在超导临界温度附近,热电势率也有一个明显的转变过程. 相似文献
11.
Nb3Sn超导线现为大型工程科研项目如国际热核聚变反应堆(ITER),强磁场项目等磁体的基本材料之一.由于A15相的脆性,受力作用下Nb3Sn超导体超导性能会发生严重退化.在ITER用管内电缆导体(CICC)中,股线受到电磁力作用时会产生弯曲应变.为研究弯曲应变对超导线的临界电流影响,我们对ITER标准临界电流测试骨架中间部位开槽,使股线在通电过程中产生循环的弯曲应变,并测试得到其临界电流.结合Nb3Sn超导线偏应变临界电流定标律,分析在两种极限假设情况(低丝间电阻和高丝间电阻)下超导线弯曲应变对临界电流的影响,并与骨架开槽实验结果进行比较. 相似文献
12.
前言 Nb_3Sn是A-15化合物中的一个重要超导材料,有较高的H_(c2)(230kG)、T_c(18K)和J_c(在100kG场强下为2.6×10~(5)A.cm~(-2)),继Nb_(3)Sn掺ZrO_(2)颗粒的方法改善了J_c)性能之后叫,J.S.Caslaw期望加入第三元素引起反应动力学的改变来阻止或加快Nb_3Sn的形成达到影响其结构与性能. 结果发现在含有ZrO_2粒的铌基带上加铜扩散形成Nb_3Sn时,反应速度加快。J_c性能也几乎提高一倍. 形成Nb_3Sn的反应速度与锡的扩散速度成正比,所以,反应速度加快实际上意味着锡在铌三锡中的扩散速度加快.金属与合金中的内吸附研究表明,少量具有内表面活性的元素在合金中能显著改变某种元素的扩散速度,即:如果对B元素(或合金)而言,A元素不是内表面活性的,而C元素是内表面活性的,当加入C元素时,便会大大加速(或 相似文献
13.
14.
采用掺 Ti 铌管法(NbTi)_3Sn 导体以及“不均匀电流密度绕组设计”,“先绕制后反应”和“环氧真空浸渍”等技术制造的 Nb_3Sn 磁体适合用作 NbTi-Nb_3Sn 混合超导磁体装置的 Nb_3Sn芯磁体,其高场性能优异,体积小、重量轻、容许励磁速度快,承受失超能力强,所研制的净孔为28.5mm(重2.5kg)、30.3mm(重3.0kg)和41mm(重3.95kg)的 Nb_3Sn 磁体分别成功地用于工作中心磁场 14T,12T 和11T 的NbTi-Nb_3Sn 混合超导磁体装置. 相似文献
15.
采用青铜工艺制备了具有不同青铜基体配置的两种多芯Nb_3Sn复合线,一种复合线具有均匀的青铜配置;另一种是不均匀的,并且,和国内外大多数复合线一样,在其外部有一个厚的青铜壳。研究结果表明,复合线中的青铜配置对芯丝的均匀反应、Nb_3Sn晶粒形貌以及青铜基体中的锡源变化具有明显的影响。所有这些使得两种导体的临界电流密度出现明显的差别。对于青铜基体均匀配置的导体,J_(c芯)(Nb_3Sn + Nb)比非均匀配置的导体高20—50%, 相似文献
16.
本文介绍了用BASIC程序计算螺线管超导磁体的磁场和磁场均匀度。根据磁场均匀度的不同要求,给出复合磁体系统中内磁体的几何尺寸及所需线材。实例给出的是采用多芯Nb_3Sn复合导体制作螺线管磁体的工艺及某些测量结果,对于Nb_3Sn磁体的制作具有普遍适用性。 相似文献
17.
18.
19.
本文报导了一种新型实用Nb~3Sn超导材料。它是含有6根多芯Nb_3Sn复合线(φ0.14mm)和1根中心增强钼丝(φ0.16mm)的7股单层微型电缆(φ0.45mm)。其最佳性能如下:T_c=17.7K;H_(c2)=24.9T(4.2K);16T下的J_c( 青铜+Nb_3Sn+Nb)=260A/mm~2(4.2K);许用弯曲直径为20mm,室温下许用拉伸应力高达392MPa,且能多次复绕,其超导性能不退降。其内径为40mm的试验磁体与12.8T背场组合,中心磁场达到14.52T。它是制作小型高场超导磁体的优良材料。 相似文献
20.
本文研究了热处理对实用多芯Nb,Sn超导体的影响.在(650—750℃热处理时,Nb_3Sn层厚度Y与时间t可用Y∞t~(72)关系表示,这里0.130≤n≤0.195.多芯复合材料在热处理过程中,Cu-Sn基体中Sn量消耗显著地影响Nb_3Sn生长速率,考虑了这一因素的Nb_3Sn生长动力学修正公式能对实验结果进行解释.700℃热处理10—100小时,Nb_3Sn品粒尺寸是热处理时间的一个函数。晶粒大小随热处理时间增长而增大,并且∞t~m,m=0.205.对于锡青铜基体与铌比值分别为1.84和3.05的两种导体,在700℃热处理时,其临界电流是热处理时间的一个函数.I_c(t)中最大值取决于Nb_3Sn层增厚和晶粒度长大的综合效果.T_c随热处理时间增长和温度升高而峪有提高.这大概与Nb_3Sn层化学计量比有关. 相似文献