首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crouzeix-Raviart type finite elements on anisotropic meshes   总被引:47,自引:0,他引:47  
Summary. The paper deals with a non-conforming finite element method on a class of anisotropic meshes. The Crouzeix-Raviart element is used on triangles and tetrahedra. For rectangles and prismatic (pentahedral) elements a novel set of trial functions is proposed. Anisotropic local interpolation error estimates are derived for all these types of element and for functions from classical and weighted Sobolev spaces. The consistency error is estimated for a general differential equation under weak regularity assumptions. As a particular application, an example is investigated where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges. A numerical test is described. Received May 19, 1999 / Revised version received February 2, 2000 / Published online February 5, 2001  相似文献   

2.
Summary. We consider convex interpolation with cubic splines on grids built by adding two knots in each subinterval of neighbouring data sites. The additional knots have to be variable in order to get a chance to always retain convexity. By means of the staircase algorithm we provide computable intervals for the added knots such that all knots from these intervals allow convexity preserving spline interpolation of continuity. Received May 31, 1994 / Revised version received December 22, 1994  相似文献   

3.
Summary. The existence of Gaussian cubature for a given measure depends on whether the corresponding multivariate orthogonal polynomials have enough common zeros. We examine a class of orthogonal polynomials of two variables generated from that of one variable. Received February 9, 1993 / Revised version received January 18, 1994  相似文献   

4.
Summary. This paper generalizes the idea of approximation on sparse grids to discrete differential forms that include )- and -conforming mixed finite element spaces as special cases. We elaborate on the construction of the spaces, introduce suitable nodal interpolation operators on sparse grids and establish their approximation properties. We discuss how nodal interpolation operators can be approximated. The stability of -conforming finite elements on sparse grids, when used to approximate second order elliptic problems in mixed formulation, is investigated both theoretically and in numerical experiments. Received November 2, 2000 / Revised version received October 23, 2001 / Published online January 30, 2002 This work was supported by DFG. This paper is dedicated to Ch. Zenger on the occasion of his 60th birthday.  相似文献   

5.
Summary. There have been many efforts, dating back four decades, to develop stable mixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displacement is sought. Although there are number of well-known mixed finite element pairs known for the analogous problem involving vector fields and scalar fields, the symmetry of the stress field is a substantial additional difficulty, and the elements presented here are the first ones using polynomial shape functions which are known to be stable. We present a family of such pairs of finite element spaces, one for each polynomial degree, beginning with degree two for the stress and degree one for the displacement, and show stability and optimal order approximation. We also analyze some obstructions to the construction of such finite element spaces, which account for the paucity of elements available. Received January 10, 2001 / Published online November 15, 2001  相似文献   

6.
Summary. The interpolation theorem for convex quadrilateral isoparametric finite elements is proved in the case when the condition is not satisfied, where is the diameter of the element and is the radius of an inscribed circle in . The interpolation error is in the -norm and in the -norm provided that the interpolated function belongs to . In the case when the long sides of the quadrilateral are parallel the constants appearing in the estimates are evaluated. Received September 1993 / Revised version received March 6, 1995  相似文献   

7.
Summary. In this paper,we prove superconvergence results for the vector variable when lowest order triangular mixed finite elements of Raviart-Thomas type [17] on uniform triangulations are used, i.e., that the -distance between the approximate solution and a suitable projection of the real solution is of higher order than the -error. We prove results for both Dirichlet and Neumann boundary conditions. Recently, Duran [9] proved similar results for rectangular mixed finite elements, and superconvergence along the Gauss-lines for rectangular mixed finite elements was considered by Douglas, Ewing, Lazarov and Wang in [11], [8] and [18]. The triangular case however needs some extra effort. Using the superconvergence results, a simple postprocessing of the approximate solution will give an asymptotically exact a posteriori error estimator for the -error in the approximation of the vector variable. Received December 6, 1992 / Revised version received October 2, 1993  相似文献   

8.
Summary. We present an adaptive finite element method for solving elliptic problems in exterior domains, that is for problems in the exterior of a bounded closed domain in , . We describe a procedure to generate a sequence of bounded computational domains , , more precisely, a sequence of successively finer and larger grids, until the desired accuracy of the solution is reached. To this end we prove an a posteriori error estimate for the error on the unbounded domain in the energy norm by means of a residual based error estimator. Furthermore we prove convergence of the adaptive algorithm. Numerical examples show the optimal order of convergence. Received July 8, 1997 /Revised version received October 23, 1997  相似文献   

9.
Summary. Macro-elements of smoothness on Clough-Tocher triangle splits are constructed for all . These new elements are improvements on elements constructed in [11] in that (disproving a conjecture made there) certain unneeded degrees of freedom have been removed. Numerical experiments on Hermite interpolation with the new elements are included. Received September 6, 2000 / Revised version received November 15, 2000 / Published online July 25, 2001  相似文献   

10.
Summary. We compare the robustness of three different low-order mixed methods that have been proposed for plate-bending problems: the so-called MITC, Arnold-Falk and Arnold-Brezzi elements. We show that for free plates, the asymptotic rate of convergence in the presence of quasiuniform meshes approaches the optimal O(h) for MITC elements as the thickness approaches 0, but only approaches for the latter two. We accomplish this by establishing lower bounds for the error in the rotation. The deterioration occurs due to a consistency error associated with the boundary layer – we show how a modification of the elements at the boundary can fix the problem. Finally, we show that the Arnold-Brezzi element requires extra regularity for the convergence of the limiting (discrete Kirchhoff) case, and show that it fails to converge in the presence of point loads. Received June 9, 1998 / Published online December 6, 1999  相似文献   

11.
Convergent adaptive finite elements for the nonlinear Laplacian   总被引:3,自引:3,他引:0  
Summary. The numerical solution of the homogeneous Dirichlet problem for the p-Laplacian, , is considered. We propose an adaptive algorithm with continuous piecewise affine finite elements and prove that the approximate solutions converge to the exact one. While the algorithm is a rather straight-forward generalization of those for the linear case p=2, the proof of its convergence is different. In particular, it does not rely on a strict error reduction. Received December 29, 2000 / Revised version received August 30, 2001 / Published online December 18, 2001 RID="*" ID="*" Current address: Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy; e-mail: veeser@mat.unimi.it  相似文献   

12.
Summary. In this paper, we consider the problem of designing plate-bending elements which are free of shear locking. This phenomenon is known to afflict several elements for the Reissner-Mindlin plate model when the thickness of the plate is small, due to the inability of the approximating subspaces to satisfy the Kirchhoff constraint. To avoid locking, a “reduction operator” is often applied to the stress, to modify the variational formulation and reduce the effect of this constraint. We investigate the conditions required on such reduction operators to ensure that the approximability and consistency errors are of the right order. A set of sufficient conditions is presented, under which optimal errors can be obtained – these are derived directly, without transforming the problem via a Hemholtz decomposition, or considering it as a mixed method. Our analysis explicitly takes into account boundary layers and their resolution, and we prove, via an asymptotic analysis, that convergence of the finite element approximations will occur uniformly as , even on quasiuniform meshes. The analysis is carried out in the case of a free boundary, where the boundary layer is known to be strong. We also propose and analyze a simple post-processing scheme for the shear stress. Our general theory is used to analyze the well-known MITC elements for the Reissner-Mindlin plate. As we show, the theory makes it possible to analyze both straight and curved elements. We also analyze some other elements. Received June 19, 1995  相似文献   

13.
Summary. Using a method based on quadratic nodal spline interpolation, we define a quadrature rule with respect to arbitrary nodes, and which in the case of uniformly spaced nodes corresponds to the Gregory rule of order two, i.e. the Lacroix rule, which is an important example of a trapezoidal rule with endpoint corrections. The resulting weights are explicitly calculated, and Peano kernel techniques are then employed to establish error bounds in which the associated error constants are shown to grow at most linearly with respect to the mesh ratio parameter. Specializing these error estimates to the case of uniform nodes, we deduce non-optimal order error constants for the Lacroix rule, which are significantly smaller than those calculated by cruder methods in previous work, and which are shown here to compare favourably with the corresponding error constants for the Simpson rule. Received July 27, 1998/ Revised version received February 22, 1999 / Published online January 27, 2000  相似文献   

14.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

15.
Motivated by earlier considerations of interval interpolation problems as well as a particular application to the reconstruction of railway bridges, we deal with the problem of univariate convexity preserving interval interpolation. To allow convex interpolation, the given data intervals have to be in (strictly) convex position. This property is checked by applying an abstract three-term staircase algorithm, which is presented in this paper. Additionally, the algorithm provides strictly convex ordinates belonging to the data intervals. Therefore, the known methods in convex Lagrange interpolation can be used to obtain interval interpolants. In particular, we refer to methods based on polynomial splines defined on grids with additional knots. Received September 22, 1997 / Revised version received May 26, 1998  相似文献   

16.
Summary. A posteriori error estimators of residual type are derived for piecewise linear finite element approximations to elliptic obstacle problems. An instrumental ingredient is a new interpolation operator which requires minimal regularity, exhibits optimal approximation properties and preserves positivity. Both upper and lower bounds are proved and their optimality is explored with several examples. Sharp a priori bounds for the a posteriori estimators are given, and extensions of the results to double obstacle problems are briefly discussed. Received June 19, 1998 / Published online December 6, 1999  相似文献   

17.
Summary. The use of mixed finite element methods is well-established in the numerical approximation of the problem of nearly incompressible elasticity, and its limit, Stokes flow. The question of stability over curved elements for such methods is of particular significance in the p version, where, since the element size remains fixed, exact representation of the curved boundary by (large) elements is often used. We identify a mixed element which we show to be optimally stable in both p and h refinement over curvilinear meshes. We prove optimal p version (up to ) and h version (p = 2, 3) convergence for our element, and illustrate its optimality through numerical experiments. Received August 25, 1998 / Revised version received February 16, 1999 / Published online April 20, 2000 –? Springer-Verlag 2000  相似文献   

18.
Summary. We consider the isoparametric transformation, which maps a given reference element onto a global element given by its vertices, for multi-linear finite elements on pyramids and prisms. We present easily computable conditions on the position of the vertices, which ensure that the isoparametric transformation is bijective. Received May 7, 1999 / Revised version received April 28, 2000 / Published online December 19, 2000  相似文献   

19.
Summary. In this paper, we derive the optimal error bounds for the stabilized MITC3 element [3], the MIN3 type element [7] and the T3BL element [8]. In this way we have solved the problem proposed recently in [5] in a positive manner. Moreover, we estimate the difference between stabilized MITC3 and MIN3 and show it is of order uniform in the plate thickness. Received May 31, 2000 / Revised version received April 2, 2001 / Published online September 19, 2001  相似文献   

20.
Summary. Both mixed finite element methods and boundary integral methods are important tools in computational mechanics according to a good stress approximation. Recently, even low order mixed methods of Raviart–Thomas-type became available for problems in elasticity. Since either methods are robust for critical Poisson ratios, it appears natural to couple the two methods as proposed in this paper. The symmetric coupling changes the elliptic part of the bilinear form only. Hence the convergence analysis of mixed finite element methods is applicable to the coupled problem as well. Specifically, we couple boundary elements with a family of mixed elements analyzed by Stenberg. The locking-free implementation is performed via Lagrange multipliers, numerical examples are included. Received February 21, 1995 / Revised version received December 21, 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号