首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies on a generalized Coleman-Hepp model are done on the basis of a spin coherent state representation and a transformation property of the model Hamiltonian. Namely, transforming the original model Hamiltonian into a simpler form, we can determine time evolution of the whole system by successive applications of rotation operators in a spinor space. Dynamics of detector spins as well as that of an incident particle are fully discussed. Explicit numerical evaluations are also performed. Relevance of our solution to a generalized Cini model is also briefly mentioned. Received 24 August 1999  相似文献   

2.
Dirac equation is reformulated in terms of real local observables, which are mean values of the wave function . The quadrivector current is shown to be a function of the potential vector and of other local observables. The equations describe the evolution of a four dimensional system T, X, Y, Z, and of two scalars, in the coordinate system ct, x, y, z. The current is proportional to the T vector. The Z vector is associated with the spin of the electron. Energy and gauge transformations correspond to rotations in the plane (X, Y). In the presence of a static field, the (real) solutions of the equations appear as eigenfunctions associated with energy eigenvalues. Received 7 September 1998  相似文献   

3.
Based on the Born-Oppenhemer approximation, the concept of adiabatic quantum entanglement is introduced to account for quantum decoherence of a quantum system due to its interaction with a large system of one or a few degrees of freedom. In the adiabatic limit, it is shown that the wave function of the total system formed by the quantum system plus the large system can be factorized as an entangled state with correlation between adiabatic quantum states and quasi-classical motion configurations of the large system. In association with a novel viewpoint about quantum measurement, which has been directly verified by most recent experiments [e.g., S. Durr et al., Nature 33, 359 (1998)], it is shown that the adiabatic entanglement is indeed responsible for the quantum decoherence and thus can be regarded as a “clean” quantum measurement when the large system behaves as a classical object. By taking the large system respectively to be a macroscopically distinguishable spatial variable, a high spin system and a harmonic oscillator with a coherent initial state, three illustrations are presented with their explicit solutions in this paper. Received 26 February 2000 and Received in final form 14 July 2000  相似文献   

4.
The quantum interference effects induced by the Wess-Zumino term, or Berry phase are studied theoretically in resonant quantum coherence of the magnetization vector between degenerate states in nanometer-scale single-domain ferromagnets in the absence of an external magnetic field. We consider the magnetocrystalline anisotropy with trigonal, tetragonal and hexagonal crystal symmetry, respectively. By applying the periodic instanton method in the spin-coherent-state path integral, we evaluate the low-lying tunnel splittings between degenerate excited states of neighboring wells. And the low-lying energy level spectrum of mth excited state are obtained with the help of the Bloch theorem in one-dimensional periodic potential. The energy level spectrum and the thermodynamic properties of magnetic tunneling states are found to depend significantly on the total spins of ferromagnets at sufficiently low temperatures. Possible relevance to experiments is also discussed. Received 15 December 1999  相似文献   

5.
This paper is concerned with the transmission time of an incident Gaussian wave packet through a symmetric rectangular barrier. Following Hartman (J. Appl. Phys. 33, 3427 (1962)), the transmission time is usually taken as the difference between the time at which the peak of the transmitted packet leaves the barrier of thickness and the time at which the peak of the incident Gaussian wave packet arrives at the barrier. This yields a corresponding transmission velocity which appears under certain conditions as a supervelocity, i.e. becomes larger than the corresponding propagation velocity in free space which is the group velocity for electrons or the velocity of light for photons, respectively. By analysing the propagation of a broadband wave packet (which leads in free space to an extremely concentrated wave packet at a certain time) we obtain the pulse response function of the barrier and show that the insertion of the barrier is physically unable to produce a supervelocity. Therefore, the peak of an incident Gaussian wave packet and the peak of the transmitted wave packet are in no causal relationship. The shape of the transmitted wave packet is produced from the incident wave by convolution with the pulse response of the barrier. This yields a distortion of the shape of the wave packet which includes also the observed negative time shift of the peak. We demonstrate further that the phenomenon of Hartman's supervelocities is not restricted to barriers with their exponentially decaying fields but occurs for instance also in transmission lines with an inserted LCR circuit. Received 7 January 1999 and Received in final form 22 April 1999  相似文献   

6.
We consider a statistical mixture based on that of two identical harmonic oscillators which is characterized by four parameters, namely, the concentrations (x and y) of diagonal and nondiagonal bipartite states, and their associated thermal-like noises (T/α and T, respectively). The fully random mixture of two spins 1/2 as well as the Einstein-Podolsky-Rosen (EPR) state are recovered as particular instances. By using the conditional nonextensive entropy as introduced by Abe and Rajagopal, we calculate a bound for the separable-entangled frontier. Although this procedure is known to provide a necessary but in general not sufficient condition for separability, it does recover, in the particular case x = T = 0 ( ∀α), the 1/3 exact result known as Peres' criterion. The x = 0 frontier remarkably resembles to the critical line associated with standard diluted ferromagnetism where the entangled region corresponds to the ordered one and the separable region to the paramagnetic one. The entangled region generically shrinks for increasing T or increasing α. Received 18 April 2002 / Received in final form 11 July 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: celia@cbpf.br  相似文献   

7.
We propose a method for entangling a system of two-level atoms in photonic crystals. The atoms are assumed to move in void regions of a photonic crystal. The interaction between the atoms is mediated either via a defect mode or via a resonant dipole-dipole interaction. We show that these interactions can produce pure entangled atomic states. We analyze the problem with parameters typical for currently existing photonic crystals and Rydberg atoms and we show that the atoms can emerge from photonic crystals in entangled states. Depending on the linear dimensions of the crystal we estimate that a pair of atoms entangled in a photonic crystal can be separated by tens of centimeters. Receive 11 June 1999 and Received in final form 4 October 1999  相似文献   

8.
It is shown that the time-dependent equations (Schr?dinger and Dirac) for a quantum system can be derived from the time-independent equation for the larger object of the system interacting with its environment, in the limit that the dynamical variables of the environment can be treated semiclassically. The time which describes the quantum evolution is then provided parametrically by the classical evolution of the environment variables. The method used is a generalization of that known for a long time in the field of ion-atom collisions, where it appears as a transition from the full quantum mechanical perturbed stationary states to the impact parameter method in which the projectile ion beam is treated classically. Received 25 October 1999  相似文献   

9.
We present a method for the direct measurement of the Wigner-function matrix for complex vibronic states of a trapped atom, that is suited to analyse the entanglement between two motional degrees of freedom and the internal electronic dynamics. It is a generalisation of the method for the determination of vibronic quantum states [S. Wallentowitz, R.L. de Matos Filho, W. Vogel, Phys. Rev. A 56, 1205 (1997)] in conjunction with the scheme for the direct observation of the Wigner function of a single motional degree of freedom [L.G. Lutterbach, L. Davidovich, Phys. Rev. Lett. 78, 2547 (1997)]. The major advantage of the present method is that it reduces the experimental efforts substantially. On the other hand, it is demonstrated that the nonlinear vibronic coupling necessary for this method turns out to be its main limitation. Received: 5 August 1998  相似文献   

10.
Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is investigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton technique in the spin-coherent-state path-integral representation, respectively. The quantum interference or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by applying the similar technique, but in the large noncompensation limit. Received 4 June 1999  相似文献   

11.
Reliable teleportation in trapped ions   总被引:8,自引:0,他引:8  
We study a method for the implementation of a reliable teleportation protocol (theoretically, 100% of success) of internal states in trapped ions. The generation of the quantum channel (any of four Bell states) may be done respecting technical limitations on individual addressing and without claiming the Lamb-Dicke regime. An adequate Bell analyzer, that transforms unitarily the Bell basis into a completely disentangled one, is considered. Probable sources of error and fidelity estimations of the teleportation process are studied. Finally, we discuss experimental issues, proposing a scenario in which the present scheme could be implemented. Received 1st June 2000 and Received in final form 17 August 2000  相似文献   

12.
13.
Two types of particles, A and B with their corresponding antiparticles, are defined in a onedimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.  相似文献   

14.
A new type of collision experiments is discussed, where observations of two successive collisions of the same pair of particles would be possible. When such technology is available, a surprising restoring of entanglement, normally considered broken in usual collision experiments, could be observed. As an illustration the collision partners He+ and He++ in a collision regime where the resonant charge transfer is dominating are considered. In the analysis it is shown that in such experiments, two spatially widely separated ion paths, corresponding in fact to two different charge states, would contribute coherently to the final amplitudes, describing which of the ions emerges as singly charged, i.e. which carries the single electron involved. The double collision experiments are not trivial, since their overall cross-sections are extremely small. Development of relevant experimental techniques will decide if the proposed phenomena remain in the field of gedanken experiments or enter the world of real experimental physics. Received 2 December 1999 and Received in final form 12 May 2000  相似文献   

15.
We analyze the transient nonclassical behaviour of a single-mode field whose interaction with an environment is governed by the quantum optical master equation. Our analytic method makes use of the generalized characteristic function of the field state. First, we find a time at which all squeezing effects disappear by decoherence regardless of the initial state of the mode. In the case of an input even coherent state, an unusual modification of higher-order squeezing at low values of thermal mean occupancy transferred to the field is found and discussed. For the same initial state, we also perform a comprehensive analysis of the mixing process during the interaction with the reservoir. We prove that a maximum in the evolution of the 2-entropy of the attenuated mode exists on condition that its initial mean photon number exceeds the mean occupancy of the reservoir. This transient mixing enhancement can be considered as a quantum effect of the initial state on the mode damping. Received 22 April 1999 and Received in final form 2 November 1999  相似文献   

16.
We reconsider the problem of the sum and difference of two angle variables in quantum mechanics. The spectra of the sum and difference operators have widths of , but angles differing by are indistinguishable. This means that the angle sum and difference probability distributions must be cast into a range. We obtain probability distributions for the angle sum and difference and relate this problem to the representation of nonbijective canonical transformations. Received: 6 December 1997 / Revised: 15 April 1998 / Accepted: 7 May 1998  相似文献   

17.
For a closed bi-partite quantum system partitioned into system proper and environment we interpret the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into. Received 13 June 2002 / Received in final form 14 November 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: jochen@theol.physik.uni-stuttgart.de  相似文献   

18.
We calculate the Wigner distribution function for the Calogero-Sutherland system which consists of harmonic and inverse-square interactions. The Wigner distribution function is separated out into two parts corresponding to the relative and center-of-mass motions. A general expression for the relative Wigner function is obtained in terms of the Laguerre polynomials by introducing a new identity between Hermite and Laguerre polynomials.  相似文献   

19.
We propose a method to create macroscopic superpositions, so-called Schr?dinger cat states, of different motional states of an ideal Bose-Einstein condensate. The scheme is based on the scattering of a freely expanding condensate by the light field of a high-finesse optical cavity in a quantum superposition state of different photon numbers. The atom-photon interaction creates an entangled state of the motional state of the condensate and the photon number, which can be converted into a pure atomic Schr?dinger cat state by operations only acting on the cavity field. We discuss in detail the fully quantised theory and propose an experimental procedure to implement the scheme using short coherent light pulses. Received 26 June 2000 and Received in final form 2nd October 2000  相似文献   

20.
We examine the anomalous behavior of the transmittance through a one-dimensional ring having two branches of different lengths, as determined by the lead positions. Jumps in the transmittance phase are occurring in correspondence to both (a) zeros in the transmission at the eigenstates of the isolated ring and (b) destructive interference events. It is also found that when the ratio of the branch lengths is given by p/q satisfying p + q = 0(mod 4), the two characteristic zeros merge into a single point and the transmittance phase becomes identical to the so-called Friedel phase. Received 7 June 2002 / Received in final form 11 December 2002 Published online 4 June 2003 RID="a" ID="a"e-mail: juyeon.yi@physik.uni-regensburg.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号