首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
ZnO纳米粒子结构对光电量子限域特性的影响   总被引:7,自引:0,他引:7  
Zn O作为一种宽禁带 (3 .3 6e V)高激子结合能 (60 me V)的半导体材料已引起人们的关注 .Zn O纳米粒子的比表面积较大 ,表面活性较高 ,对周围环境敏感 ,使其成为传感器制作中最有前途的材料[1] ,还在太阳能转换[2 ] 、发光材料[3] 、半导体表面修饰与敏化[4 ] 、纳米电子学以及分子电子学器件[5] 等领域显示出广阔的应用前景 .制约这些应用的关键是 Zn O纳米粒子表面和界面的电子结构和电荷转移行为 ,但有关此方面的报道较少 .本文用溶胶 -凝胶法制备了不同粒径的 Zn O纳米粒子 ,应用表面光电压谱 (SPS)和场诱导表面光电压谱 (FISPS…  相似文献   

2.
鞠剑  陈卫 《电化学》2014,20(4):353
银基氧还原电催化剂具有较高的电催化活性且价格相对低廉,因而受到广泛关注. 本文采用简单、预先合成的石墨烯量子点作为载体和还原剂,制得了负载于石墨烯量子点、且无保护剂和表面活性剂的表面洁净银纳米粒子(Ag NPs/GQDs). 电化学研究表明,Ag NPs/GQDs复合电催化剂的氧还原有较高的电催化活性,氧在碱性溶液中可经4电子途径还原为水. 与商业铂碳电极(Pt/C)相比,AgNPs/GQDs电极具有高催化电流密度、良好稳定性和极佳抗甲醇性能. 该银纳米粒子对开发高性能和低成本的非铂氧还原电催化剂有潜在的应用前景.  相似文献   

3.
陈维民 《化学进展》2012,(Z1):246-252
低温燃料电池是理想的移动式电源,它所采用的电催化剂主要为Pt基贵金属纳米催化剂。提高纳米催化剂在电池内部环境中的稳定性、抑制其活性衰减,对于延长低温燃料电池的使用寿命和节约成本具有十分重要的意义。本文从三个方面综述了近年来在低温燃料电池纳米催化剂稳定化方面的研究进展。首先,通过载体效应实现催化剂的稳定化,包括碳载体的石墨化、碳载体的掺杂、表面功能化及其他载体的采用等。其次,通过空间效应实现催化剂的稳定化,包括催化剂粒子表面覆盖、催化剂粒子微孔嵌入、催化剂表面杂多酸单层自组装及聚合物电解质空间阻隔等。再其次,通过协同效应实现催化剂的稳定化,包括提升金属粒子的氧化电位、强化组分间的相互作用等。最后,对低温燃料电池纳米催化剂稳定化的发展前景进行了展望。  相似文献   

4.
CeO2纳米晶的光电量子尺寸效应   总被引:3,自引:2,他引:3  
CeO_2纳米晶的光电量子尺寸效应王德军,崔毅,李铁津,董相廷,洪广言(吉林大学化学系,长春,130023)(中国科学院长春应用化学研究所,长春)关键词纳米晶,CeO_2,表面光伏,量子限域纳米材料结构功能特性的研究有着重要的高科技应用背景[1],但有...  相似文献   

5.
负载型纳米非贵金属催化剂上CO的氧化   总被引:11,自引:1,他引:11  
杜芳林  陈诵英 《分子催化》1997,11(3):209-214
用电弧等离子体法制备了纳米Cu、Cr、Mn、Fe、Ni、采用机械方法将其加到Al2O3载体上,制成负载型纳米催化剂,用TEM、SEM、XRD、HRTEM等手段,对纳米粒子和催化剂进行了表征,对CO催化化的结果表明,铜催化剂的活性最高;铜、铬催化剂的活性高于贵金属钯催化剂;锰催化剂活性与钯相当;铁、镍催化剂活性较差,XRD实验表明,催化反应后,纳米金属将变成氧化物。  相似文献   

6.
铂基催化剂因具有高催化活性、高稳定性而成为极其重要的能源转化催化剂。本文采用水热法合成氮掺杂石墨烯量子点支撑的钯纳米复合材料(Pd@N-GQDs),并将其用于碱性介质中甲醇的电催化氧化反应。实验结果表明,相比同类型材料钯负载于石墨烯纳米片(Pd@GS)、钯负载于石墨烯量子点(Pd@GQDs)和商业钯黑催化剂(Pd@C),Pd@N-GQDs纳米材料具有很高的催化活性和稳定性,并可减少催化剂材料中贵金属的使用量。  相似文献   

7.
杜芳林 《分子催化》1998,12(2):125-128
以电弧等离子体法制备纳米铜活性组分。将物理法制备的负载型纳米Cu/γ-Al2O3催化剂用于催化一氧化碳氧化反应,发现在催化过程中其催化活性呈规律性变化,即初始活性较低;空气中焙烧预处理易使纳米粒子长大。  相似文献   

8.
采用电合成前驱体Ti(OEt)4直接水解法和电化学扫描电沉积法制备纳米TiO2-CNT-PtNi复合纳米催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 纳米PtNi合金粒子(平均粒径8 nm)均匀地分散在纳米TiO2-CNT复合膜的三维网络结构中. 通过暂态电化学方法研究表明, 复合纳米催化剂的电化学活性比表面积为90 m2/g, 对甲醇氧化具有很高的电催化活性和稳定性, 常温常压下甲醇氧化峰电位为0.67和0.44 V, 当温度为60 ℃时, 氧化峰电位负移至0.64和0.30 V, 氧化峰电流密度高达1.38 A/cm2. 复合纳米催化剂对甲醇电氧化的高催化活性和稳定性可归因于多元复合纳米组分的协同催化作用, 这种作用导致CO在复合纳米催化剂上的弱吸附, 从而避免了催化剂的中毒.  相似文献   

9.
葛睿  黄燕  尹鹏程  魏先文 《有机化学》2007,27(6):724-732
纳米尺度的催化剂具有高的比表面积和表面能, 其催化活性显著高于传统催化剂. 综述了近年来纳米级过渡金属催化剂在有机合成方面的应用, 并对其发展作了展望.  相似文献   

10.
采用荧光光谱及紫外-可见吸收光谱研究了不同条件下磁性纳米氧化铁(MION)与CdTe量子点的相互作用, 发现MION对CdTe量子点荧光有猝灭作用. 由Stern-Volmer方程分析得到MION与CdTe量子点结合反应的荧光猝灭速率常数Kq值为7.68×1015 mol•L-1•s-1, 结合紫外-可见吸收光谱进一步证实此过程为静态猝灭过程. 并由Lineweaver-Burk方程得到MION与CdTe量子点结合的热力学焓变(?H?)值为21.6 kJ•mol-1、熵变(?S?)值为210.3 J• mol-1•K-1和自由能变(?G?)值为-41.1 kJ•mol-1 (298 K). 对其相互作用机理进行探讨, 结果表明MION对CdTe量子点作用为自发过程, 主要存在静电作用.  相似文献   

11.
Biofuels are a class of clean fuels and promising for energy demand. Biodiesel is relatively costly, which limits the commercialization of the product. The waste edible oil and animal fats are raw materials for biodiesel production. This paper focuses on the catalytic production of biofuels and reviews the application of different catalysts to produce biodiesel from waste oils by using esterification and transesterification reactions. The reaction in the presence of nanocatalysts is carried out under mild operating conditions. Nowadays, magnetic nanocatalysts are preferred to bulk catalysts due to the absence of mass transfer resistance and fast deactivation as well as high recovery rate during the separation. Functionalized magnetic nanocatalysts are more attractive for biodiesel production. Further studies should do to develop highly active and selective nanocatalysts for industrial scale.  相似文献   

12.
In a heteronuclear spin system, with initially prepared single quantum (SQ) coherence of X-spin, the irradiation of the proton spins will induce all the possible transitions including those SQs and multiple quanta (MQs) available in the system to be studied. The MQs appear in a rather weak irradiation while a strong irradiation results in a complete decoupling situation. Theoretical analysis is made to explain this phenomenon and is agreed qualitatively with experiments in the CH2 group. This phenomenon of MQ induction may happen in a decoupling experiment, when the effective irradiation strength is rather weak and it may also provide a convenient approach to create and then to manipulate MQ coherences in heteronuclear spin systems.  相似文献   

13.
Extremely small PtRu/C nanocatalysts were prepared via a carbonyl route. A thorough in situ reduction X-ray structural characterization of these catalysts was performed. After synthesis and storage under ambient conditions, the diffraction patterns of PtRu/C catalysts were seriously modified, indicating the surface oxide formation. In the reduced state, the particle size is around 2 nm. The observed relative fluctuations of lattice constants are 3%, which is far too large to be explained by a compositional fluctuation. Their origin is attributed to strong but isotropic strains and is related to the alloy formation. The annealing experiments show all the catalysts present an exceptional thermal stability when annealed in inert ambient, especially that of the Pt1Ru1/C catalyst. Besides, it is interesting to note that there is no thermal expansion evidence from the patterns.  相似文献   

14.
Microwave photons trapped in a superconducting cavity constitute an ideal system to realize some of the thought experiments imagined by the founding fathers of quantum physics. The interaction of these trapped photons with Rydberg atoms crossing the cavity illustrates fundamental aspects of measurement theory. The experiments performed with this “photon box” at Ecole Normale Supérieure (ENS) belong to the domain of quantum optics called “Cavity Quantum Electrodynamics”. We have realized the non‐destructive counting of photons, the recording of field quantum jumps, the preparation and reconstruction of “Schrödinger cat” states of radiation and the study of their decoherence, which provides a striking illustration of the transition from the quantum to the classical world. These experiments have also led to the demonstration of basic steps in quantum information processing, including the deterministic entanglement of atoms and the realization of quantum gates using atoms and photons as quantum bits. This lecture starts by an introduction stressing the connection between the ENS photon box and the ion trap experiments of David Wineland, whose accompanying lecture recalls his own contribution to the field of single particle control. I give then a personal account of the early days of Cavity Quantum Electrodynamics before describing the main experiments performed at ENS during the last twenty years and concluding by a discussion comparing our work to other researches dealing with the control of single quantum particles.  相似文献   

15.
Scientific interest in carbon-based materials (CBMs) has grown dramatically over the past few decades. Due to a variety of atomic orbital hybrid forms (sp, sp2 and sp3 hybridization), carbon can form a variety of materials with diverse structures and characteristics. CBMs used as efficient catalyst supports show extensive promise in organic reactions, which is attributed to their structural similarity with organics, large specific surface area, chemical stability, and photocatalytic properties. This review presents the synthesis of CBM-supported palladium nanocatalysts based on impregnation, template methods, etc. The CBMs include activated carbon (AC), graphene, carbon nanotubes (CNTs), and their functionalized products, as supports for improving the activity and recyclability of simple Pd nanocatalysts. After surveying the literature where these catalysts have been utilized for carbon–carbon coupling reactions, there is a particular emphasis on Suzuki, Heck, and Sonogashira reactions. The catalytic mechanism of these Pd nanocatalysts (surface heterogeneous catalysis or homogeneous catalysis caused by Pd leaching) is discussed in detail, especially the effect of Pd leaching on the stability of the catalyst.  相似文献   

16.
The mechanism of the reactions of methane with the gold(III) complexes [AuClx(H2O)4− x ]3−x (x = 2, 3, or 4) was studied by the DFT/PBE method with the SBK basis set. High activation barriers obtained for the reactions of [AuCl4] and [Au(H2O)Cl3] with methane suggest these reactions cannot proceed under mild conditions. The reaction of the [Au(H2O)2Cl2]+ complex with methane has a rather low energy barrier and proceeds through the formation of an intermediate complex. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 191–201, February, 2006.  相似文献   

17.
Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters   总被引:1,自引:0,他引:1  
In this paper we examine the electrodynamics of silver nanoparticles and of clusters of nanoparticles, with an emphasis on extinction spectra and of electric fields near the particle surfaces that are important in determining surface-enhanced Raman (SER) intensities. The particles and clusters are chosen to be representative of what has been studied in recent work on colloids and with lithographically prepared particles. These include spheres, spheroids, truncated tetrahedrons, and clusters of two or three of these particles, with sizes that are too large to be described with simple electrostatic approximations but small compared to the wavelength of light. The electrodynamics calculations are mostly based on the discrete dipole approximation (DDA), which is a coupled-finite element approach which produces exact or nearly exact results for particles of arbitrary size and shape if fully converged. Mie theory results are used to study the validity of the DDA for spherical particles, and we also study the validity of the modified long wavelength approximation (MLWA), which is based on perturbative corrections to the electrostatic limit, and of the single dipole per particle approximation (SDA). The results show how the dipole plasmon resonance properties and the electric field contours around the particle vary with particle shape and size for isolated particles. For clusters of particles, we study the effect of interparticle spacing on plasmon resonance characteristics. We also show that the quadrupole resonance is much less sensitive to particle shape and interparticle interactions than the dipole plasmon resonance. These results provide benchmarks that will be used in future comparisons with experiment.  相似文献   

18.
In this study, novel magnetic nanoparticle (FeNi3) based gold NPs with high surface area and easy accessibility of active sites were successfully developed by a facile approach. FeNi3 was functionalized with ionic gelation (IG) groups acting as robust anchors so that the gold NPs were well dispersed on the FeNi3 without aggregation. Spirulina coating was carried out via a wet impregnation technique based on IG using tripolyphosphate as a cross-linking agent. Because of the amplification effect of IG, high loading capacities were achieved for the nanocatalysts. Furthermore, FeNi3/IG/Au showed superparamagnetic properties, contributing to the easy recovery of the nanocatalysts by magnetic separation. FeNi3/IG/Au was developed for the synthesis of pyrazolopyrimidines in mild conditions. The FeNi3/IG/Au magnetic NPs were thoroughly characterized using transmission electron microscopy, field emission scanning electron microscopy, vibrating sample magnetometry, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The FeNi3/IG/Au nanocatalyst showed high robustness and stability in reaction for up to five cycles without significant loss of activity, probably due to the high loading of IG in the catalyst.  相似文献   

19.
二氧化碳选择性加氢反应不仅能减少二氧化碳排放, 而且能够制备多种含碳产物, 可以作为生产高附加价值化学品与燃料的平台化合物. 然而, 由于二氧化碳的高化学惰性、 碳-碳偶联过程的高能垒和诸多的竞争反应, 开发高效的纳米催化剂以促进二氧化碳的活化并转化为多样性的产物显得至关重要. 最近, 基于氧化铟的纳米催化剂在催化二氧化碳加氢方面受到广泛关注, 主要由于其成本低廉, 且具有丰富的氧缺陷位点, 可有效吸附并活化二氧化碳和氢气. 为深入了解反应机理并设计更高性能的潜在纳米催化剂, 需对氧化铟基纳米催化剂在二氧化碳加氢方面的研究进展进行总结. 本综述首先总结了不同晶型的氧化铟及其与金属氧化物或金属纳米粒子形成的复合催化剂用于催化二氧化碳选择性加氢制备C1产物的性能. 随后, 探讨了氧化铟与不同类型的沸石的复合物用于催化二氧化碳加氢制备C2+产物的性能. 最后, 提出了目前氧化铟基纳米催化剂在催化二氧化碳选择性加氢方面存在的挑战和未来的发展方向. 希望本文能够为设计具有高活性、 高选择性和高稳定性催化二氧化碳加氢的新型氧化铟基纳米催化剂提供一些思路.  相似文献   

20.
Sulfonic acid‐functionalized silica‐coated magnetic Fe3O4 nanoparticles were synthesized and applied as a green catalyst for an efficient and environmentally friendly ring opening of epoxides with aromatic amines in good to excellent yields with high chemoselectivity. Clean aminolysis of various aliphatic and aromatic epoxides in ethanol generates β‐hydroxyamines under mild reaction conditions. The synthesized acidic magnetic nanoparticles were recovered using a simple external magnet and successfully reused for five runs without any appreciable loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号