首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continuous emission of gas bubbles from a single ejection orifice immersed in a viscous fluid is considered. We first present a semi empirical model of spherical bubble growth under constant flow conditions to predict the bubble volume at the detachment stage. In a second part, we propose a physical model to describe the rise velocity of in-line interacting bubbles and we derive an expression for the net viscous force acting on the surrounding fluid. Experimental results for air/water-glycerol systems are presented for a wide range of fluid viscosity and compared with theoretical predictions. An imagery technique was used to determine the bubble size and rise velocity. The effects of fluid viscosity, gas flow rate, orifice diameter and liquid depth on the bubble stream dynamic were analyzed. We have further studied the effect of large scale recirculation flow and the influence of a neighbouring bubble stream on the bubble growth and rising velocity. Received: 23 July 1997 / Revised: 16 December 1997 / Accepted: 11 May 1998  相似文献   

2.
Physical processes accompanying the flow of a conducting bubble liquid in crossed electric and magnetic fields are considered. Based on the general equations of mechanics of multiphase media, we develop a one-dimensional model of the flow of and heat exchange in a compressible bubble liquid when the phases are not in thermal and velocity equilibrium. The model is numerically investigated. It is demonstrated that, when the bubble liquid flows along the electromagnetic force vector, the bubbles lag behind the carrying flow and are compressed and warmed up. This causes oscillations of the bubble volume, as well as oscillations of the parameters of both the disperse and carrying phase. In particular, the compression of the bubbles reduces the volumetric gas content, as well as increases the effective conductivity of the flow and the electromagnetic force in the downstream direction. This sets conditions for crisis of the bubble flow when the electromagnetic force expels the bubbles against the main stream. On the basis of the solutions obtained, the efficiency of a gas compressor is calculated.  相似文献   

3.
娄钦  李涛  杨茉 《物理学报》2018,67(23):234701-234701
本文采用气-液两相流格子Boltzmann方法模拟了复杂微通道内气泡在浮力作用下的上升过程,主要研究障碍物表面润湿性、浮力大小、障碍物尺寸和气泡初始位置对气泡变形、分裂、合并的动力学行为以及对气泡上升速度、终端速度和气泡剩余质量的运动特性的影响.研究发现,障碍物表面接触角较小时气泡能够完整地通过障碍物通道,随着障碍物表面接触角增加,气泡通过障碍物通道时严重变形,并会发生分裂行为,使得部分气泡黏附在障碍物表面,从而导致气泡到达终端时质量减少.相应地,气泡上升速度以及终端速度也随着微通道表面接触角的增加而减小.另一方面,随着浮力的增加,气泡在上升过程中更容易发生分裂和合并现象,且气泡剩余质量和终端速度随着浮力的增加呈对数形式增加.此外,随着微通道障碍物半径增加,气泡剩余质量首先缓慢减小然后快速减小,而气泡终端速度近似呈线性减小.最后,数值结果还表明当气泡初始位置偏离管道中间时,其上升速度、气泡剩余质量以及气泡终端速度都与初始位置在管道中间时的变化趋势一致,然而对应的数值均减小,且气泡在上升过程中变形更严重.  相似文献   

4.
5.
罗松  于勇 《气体物理》2019,4(2):30-43
对Mo=10-8~10-12及Re=5~750范围内的上升气泡与壁面垂直碰撞问题进行了理论求解,研究了不同控制参数下气泡碰壁反弹的规律.气泡上升和碰撞过程的运动方程考虑了浮力、液体阻力、附加质量力和与壁面碰撞时引起的薄膜诱导力.气泡碰壁过程气泡界面与壁面形成的液膜厚度变化规律由Stokes-Reynolds方程计算得到.膜内气泡变形引起的流体压强采用Young-Laplace方程求解.结果表明,基于SRYL方程的薄膜诱导力模型可以很好地预测不同Reynolds数下气泡0到多次的反弹轨迹,计算结果与实验结果吻合良好.气泡在碰壁反弹过程中会形成丰富的薄膜形状,如酒窝状变形,丘疹状变形和涟漪状变形.气泡界面变形会引起膜内压强的变化,压强的分布规律与气泡界面形状有着重要的关系.气泡在与壁面碰撞的过程中,薄膜诱导力会起主导作用,且随着Reynolds数的增加薄膜诱导力最大量级增大.气泡碰撞壁面时,反弹次数与Reynolds数有着直接的联系,不同Morton数下的气泡均在相同Reynolds数附近发生气泡反弹次数的变化.   相似文献   

6.
借助高速摄影和图像分析技术对首次发现的附壁气泡的绕圈现象进行了实验研究,重点研究游移气泡的运动轨迹、附壁气泡的布阵过程、气泡的来源以及气泡的振动细节.研究发现游移绕圈气泡的运动轨迹呈现出不稳定、不规则、不光滑的特点.阵列气泡源于游移气泡,而游移气泡变成阵列气泡的方式主要是通过合并增大体积,从而减小所受的Bjerknes...  相似文献   

7.
水下火箭水平射流初期特征研究   总被引:3,自引:0,他引:3       下载免费PDF全文
唐云龙  李世鹏  刘筑  隋欣  王宁飞 《物理学报》2015,64(23):234702-234702
水中工作固体火箭发动机处于重浮力同时作用环境下, 与工作于大气环境下的固体火箭发动机具有不同的工作特性. 为进一步掌握水下固体火箭发动机的工作特性, 对具有重浮力特征的水下射流进行研究, 重点分析重浮力作用下水平喷射射流结构及推力振荡情况, 采用VOF模型对水平喷射且具有重浮力特征的三维发动机模型进行仿真模拟, 对比有/无重浮力下射流气泡的上浮特征, 并采用动量原理对发动机工作初期的射流扰动进行分析, 获得了重浮力下水下固体火箭发动机的推力振荡特征. 研究结果表明: 由于重浮力逐渐占据主导地位, 射流气泡具有明显的上浮特征, 推力与重浮力耦合后在竖直方向产生的翻转力矩更大, 通过与文献中实验对比可见, 采用VOF模型并考虑重浮力后仿真所得射流结构与实验结果更吻合.  相似文献   

8.
The possibility to measure the velocity and size of individual bubbles in a high‐void fraction bubbly flow is investigated by using a four‐point optical fiber probe. The air bubbles have an initial spherical equivalent diameter ranging from 4 to 10 mm and the void fraction is up to 0.3. Firstly, single bubble experiments show that intrusiveness effects, i.e. bubble deformations due to the probe, are negligible provided that the bubble approaches the probe at the axis of the central fiber. A selection criterion is utilized for multiple bubble experiments. A good compromise can be found between the required accuracy, the duration of the measurements and the number of validated bubbles required for reliable statistical averaging. In an air‐water high‐void fraction vertical bubbly pipe flow, the void fraction obtained with the instrument is found to be in good agreement with both local single‐fiber probe measurements, and with the volume average void fraction obtained from pressure gradient measurements. The area average volumetric gas flow rate, based on the bubble velocity and void fraction as measured with the four‐point probe, agree with the measured gas flow rate. Also, the liquid velocity is measured by means of a laser‐Doppler anemometer, to investigate the slip velocity. The results show that reliable and interesting measurements can be obtained by using a four‐point optical fiber probe in high void fraction flows.  相似文献   

9.
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.  相似文献   

10.
In this study, based on different numberical simulation methods, the gas-liquid two-phase flow is taken as the research object. By coupling the continuity equation of incompressible fluid, Navier-Stokes equation, electric field equation and other control equations, a multi-field coupling model for rising bubbles in viscous fluids is established, and numerical simulations are carried out. The two-phase popularity of coupled electric field is studied, and the effect of electric field on bubble motion is analyzed.The Level-set and phase field method are used to track the changes of deformation and rupture during the rising of the bubble. The accuracy and validity of the two methods are verified by mass conservation. At the same time, the calculation area is determined for the accuracy of calculation, and the optimal mesh size is calculated by using mesh independence test. Compared with the level set method, the phase field method has a certain improvement in the calculation efficiency and accuracy. Among them, the calculation efficiency of the phase field calculation method in the same grid is increased by 5 times, and by 3 times in the vertical electric field environment. Moreover, using the phase field method is easier to capture the bubbles slight changes while they are rising, and the quality of the simulation results is better.The simulation analysis of bubble rising process under coupled electric field by two methods shows that under the interaction of electrostatic force, buoyancy and surface tension, the bubble is stretched into an ellipsoid along the direction of the electric field line, and the ratio of the length to the short axis is proportional to the applied electric field strength. In addition, the bubble rising velocity is affected by the electric field, and the vertical electric field accelerates the rising of the bubble.  相似文献   

11.
We present an experimental investigation of the agglomeration of microbubbles into a 2D microfoam and its flow in a rectangular microchannel. Using a flow-focusing method, we produce the foam in situ on a microfluidic chip for a large range of liquid fractions, down to a few percent in liquid. We can monitor the transition from separated bubbles to the desired microfoam, in which bubbles are closely packed and separated by thin films. We find that bubble formation frequency is limited by the liquid flow rate, whatever the gas pressure. The formation frequency creates a modulation of the foam flow, rapidly damped along the channel. The average foam flow rate depends non-linearly on the applied gas pressure, displaying a threshold pressure due to capillarity. Strong discontinuities in the flow rate appear when the number of bubbles in the channel width changes, reflecting the discrete nature of the foam topology. We also produce an ultra flat foam, reducing the channel height from 250 μm to 8 μm, resulting in a height to diameter ratio of 0.02; we notice a marked change in bubble shape during the flow.  相似文献   

12.
This paper reports on an experimental study of the splitting instability of an air bubble a few centimetres in diameter placed in a sealed cylindrical cell filled with liquid and submitted to vertical oscillations. The response of the bubble to the oscillations is observed with a high-speed video camera. It is found that the bubble dynamics is closely associated with the acceleration of the cell Γ. For small acceleration values, the bubble undergoes minor shape deformations. With increasing acceleration values, these deformations are amplified and for sufficiently large Γ the bubble becomes toroidal. The bubble may then become unstable and split into smaller parts. The onset of bubble division is studied and its dependency on physical parameters such as the fluid viscosity, the fluid surface tension and the initial size of the bubble is presented. It is found that the criterion for the bubble splitting process is associated with a threshold based on the acceleration of the oscillations. Above this threshold, the number of bubbles present in the cell is observed to grow until a final steady state is reached. Data analysis reveals that the final bubble size may be characterized in terms of Bond number.  相似文献   

13.
The rise of bubbles in viscous liquids is not only a very common process in many industrial applications, but also an important fundamental problem in fluid physics. An improved numerical algorithm based on the front tracking method, originally proposed by Tryggvason and his co-workers, has been validated against experiments over a wide range of intermediate Reynolds and Bond numbers using an axisymmetric model [J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 22 (2007) 769–795]. In the current paper, this numerical algorithm is further extended to simulate 3D bubbles rising in viscous liquids with high Reynolds and Bond numbers and with large density and viscosity ratios representative of the common air–water two-phase flow system. To facilitate the 3D front tracking simulation, mesh adaptation is implemented for both the front mesh on the bubble surface and the background mesh. On the latter mesh, the governing Navier–Stokes equations for incompressible, Newtonian flow are solved in a moving reference frame attached to the rising bubble. Specifically, the equations are solved using a finite volume scheme based on the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, and it appears to be robust even for high Reynolds numbers and high density and viscosity ratios. The 3D bubble surface is tracked explicitly using an adaptive, unstructured triangular mesh. The numerical model is integrated with the software package PARAMESH, a block-based adaptive mesh refinement (AMR) tool developed for parallel computing. PARAMESH allows background mesh adaptation as well as the solution of the governing equations in parallel on a supercomputer. Further, Peskin distribution function is applied to interpolate the variable values between the front and the background meshes. Detailed sensitivity analysis about the numerical modeling algorithm has been performed. The current model has also been applied to simulate a number of cases of 3D gas bubbles rising in viscous liquids, e.g. air bubbles rising in water. Simulation results are compared with experimental observations both in aspect of terminal bubble shapes and terminal bubble velocities. In addition, we applied this model to simulate the interaction between two bubbles rising in a liquid, which illustrated the model’s capability in predicting the interaction dynamics of rising bubbles.  相似文献   

14.
张舍  莫润阳  王成会 《声学学报》2018,43(4):689-698
液态金属中气泡行为是磁流体力学的重要方面。为对磁场条件下导电流体中气泡动力学行为作全面理解,基于磁流体动力学方法建立了磁场条件下导电流体中气泡径向振动的无量纲化动力学方程,数值研究了磁场对导电流体中气泡径向非线性振动稳定性、泡内温度、泡内气压及液体空化阈值的影响。结果显示:磁场增强了气泡非线性振动的稳定性,随着磁场增强且当作用在泡上的电磁力与惯性力数量级可比时,气泡运动为稳定的周期性振动;同时,磁场引起泡内温度、泡内压力及液体空化阈值变化。研究表明,可用磁场调节和控制液态金属中气泡的运动使其满足工程应用需求。  相似文献   

15.
Based on the Cahn-Hilliard phase field model, a three-dimensional multiple-field coupling model for simulating the motion characteristics of a rising bubble in a liquid is established in a gas-liquid two-phase flow. The gas-liquid interface motion is simulated by using a phase-field method, and the effect of the electric field intensity on bubble dynamics is studied without electric field, or with vertical electric field or horizontal electric field. Through the coupling effect of electric field and flow field, the deformation of a single rising bubble and the formation of wake vortices under the action of gravity and electric field force are studied in detail. The correctness of the results is verified by mass conservation, and the influences of different electric field directions and different voltages on the movement of bubbles in liquid are considered. The results show that the ratio of the length to axis is proportional to the strength of the electric field when the air bubble is stretched into an ellipsoid along the electric field line under the action of electrostatic gravity and surface tension. In addition, the bubble rising speed is affected by the electric field, the vertical electric field accelerates the bubble rise, and the horizontal direction slows it down.  相似文献   

16.
A study on flow field measurement around growing and rising vapour bubbles by use of PIV technique is presented. Bubbles were generated from single artificial cavities. Experiments have been conducted with saturated boiling of distilled water at atmospheric pressure. In the experiment fluid velocity field surrounding the bubbles was visualized by use of polyamide tracer particles and a sheet of a YAG pulse laser beam. The images were recorded with a cross-correlation CCD-camera. It has been shown that for lower heat flux density bubble growths in an almost quiescent bulk of liquid. For higher heat flux density the train of bubbles creates a vapour column with strong wake effect. Maximum liquid velocity recorded is approximately equal to the terminal velocity of bubble rising in a stagnant liquid.  相似文献   

17.
静止水中单个上升气泡的直接数值模拟   总被引:5,自引:2,他引:3  
本文发展了基于Front Tracking的直接数值模拟方法研究气液两相界面的迁移特性,该方法对气液两相采用半隐式的分步法直接求解N-S方程,耦合Front Tracking Method获得两相界面的三维变形。针对无边界以及垂直壁面附近静止水中的单个气泡上升过程进行模拟,研究气泡运动的机理以及气泡与壁面的相互作用。数值模拟准确再现了气泡的上升过程和变形,不同Re数下气泡的上升速度计算结果同经验关联式非常吻合,验证了该方法的有效性。随后分析了气泡周围流场的结构,发现壁面对气泡周围流场的抑制是壁面对气泡作用力的主要原因,将导致气泡逐渐偏离垂直壁面。  相似文献   

18.
D. Panahi 《实验传热》2017,30(3):179-191
Air bubble injection was employed to increase the heat transfer rate (Nusselt number) of a vertical shell and coiled tube heat exchanger in this article. Hot and cold water flowed into the coil side and shell side of heat exchanger, respectively, and air bubbles were injected inside the shell side of heat exchanger via a memorable method. Bubbles' vertical movement due to buoyancy forcing through the heat exchanger can enhance the heat transfer rate by mixing the thermal boundary layer, increasing the turbulence level of the fluid flow and increasing the shell-side fluid Reynolds number.  相似文献   

19.
The results of numerical simulation of the structure of non-isothermal polydisperse bubbly turbulent flow and heat transfer behind a sudden tube expansion are presented. The study was carried out at a change in the initial diameter of the air bubbles within d m1 = 1–5 mm and their volumetric void fraction β = 0–10 %. Small bubbles are available in almost the entire cross section of the tube, while the large bubbles pass mainly through the flow core. An increase in the size of dispersed phase causes the growth of turbulence in the liquid phase due to flow turbulization, when there is a separated flow of liquid past the large bubbles. Adding the air bubbles causes a significant reduction in the length of the separation zone and heat transfer enhancement, and these effects increase with increasing bubble size and their gas volumetric flow rate ratio.  相似文献   

20.
通过对竖直放置直接甲醇燃料电池水平流道内扩散层壁面上CO_2气泡的受力分析,建立描述气泡生长动力学方程,获得CO_2气泡生长速率和气泡脱离直径的计算方法。计算结果表明:CO_2气泡生长和脱离主要受浮力、曳力、剪切升力和表面张力的控制;气泡生长速率随电流密度和接触环直径的增大而增大;甲醇溶液流速增加,气泡脱离直径变小,且流速对气泡脱离直径的影响随接触环直径减小而变大;电池放电电流密度的变化对气泡脱离直径几乎没有影响;温度和甲醇浓度增加,均使气泡脱离直径略有减小;扩散层表面润湿性越好,气泡的脱离直径越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号