首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo-orientation of dichloride anion radicals (Cl2−·) in a glassy solution of 5 M LiCl is discussed. The quantitative characteristics of orientation of paramagnetic molecules were determined using the anisotropy of optical absorption and the angular dependence of the EPR spectrum. The orientational distribution function of ordered anion radicals was determined by joint computer modeling of the EPR spectrum recorded at different directions of the symmetry axis of a sample relative to the magnetic field of a spectrometer. It was found that the value of the order parameter (−0.1 ± 0.01), calculated from the orientational distribution function coincides with the value obtained under the measurements of the linear dichroism in the range of the detection error (−0.12 ± 0.01).  相似文献   

2.
While forming layer-by-layer (LbL) electrostatic assembly of a magnetic organic molecule, namely, nickel phthalocyanine (NiPc), we apply a magnetic field. The field orients the magnetic moment of the molecules on a monolayer along the direction of magnetic field. Such an orientation of the molecules is then electrostatically immobilized with a monolayer of a polycation. By repeating the dipping cycle, we form LbL films with planar NiPc molecules facing a particular direction. With NiPc's moment perpendicular to the molecular plane, two types of LbL films were formed: (a) NiPc's molecular plane parallel to the substrate (moment is perpendicular) and (b) molecules perpendicular to the substrate and facing one particular direction, the direction of magnetic field. Such films, with the molecules lying either (a) parallel or (b) perpendicular to the substrate, provide unique systems to study anisotropy of optical, dielectric, and electrical characteristics in these planar organic molecules. The latter film responds to the polarization of incident beam in electronic absorption spectroscopy. Here we show methods to obtain an orientation of molecules in LbL films and study anisotropy of dielectric constant and conductivity of the molecules in ultrathin films.  相似文献   

3.
The diamagnetic susceptibility of a series of random copolyesters, P(HB/HN), of 4-hydroxybenzoic acid (HBA) with 2-hydroxy-6-naphtoic acid (HNA) has been investigated, both, as a function of composition and temperature. It is shown that the molecular susceptibility of the uniaxially oriented samples linearly decreases with HB content. Results are discussed in terms of the increase in magnetic anisotropy occurring with the introduction of the HN groups. Furthermore, the temperature dependence of the specific susceptibility has been investigated. The diamagnetic susceptibility of these copolymers rises at the beginning of the solid-liquid crystalline transition. Above this temperature, the specific susceptibility exhibits a conspicuous time-dependent behavior which is a function of the temperature at the mesophase. After long storage times at the mesophase, and upon cooling at room temperature, the susceptibility shows values which approach those of a macroscopically isotropic state, i.e., a state with no overall preferred orientation. X-ray diffraction measurements confirm a relaxation mechanism of the molecular orientation occurring at temperatures above the melting point. A similar relaxation process is observed for samples with an initial planar orientation. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Tetraazanaphthalenes are diatropic molecules, whose magnetic response to a magnetic field perpendicular to the molecular plane closely resembles that of naphthalene. The out-of-plane component of the magnetic susceptibility tensor and its strong anisotropy can be used as quantifiers of magnetic aromaticity. Maps showing streamlines and modulus of the current density field provide clear evidence for diatropicity of these systems. They also explain the strong anisotropy of carbon and nitrogen magnetic shielding, which is determined by the big out-of-plane component of the nuclear shielding tensor. The electronic ring currents observed in the map deshield the nuclei of ring hydrogens by enforcing the local magnetic field and diminishing the out-of-plane component of proton shielding.  相似文献   

5.
A complex procedure for quantitative allowance for small but significant effects of molecular orientation by strong static magnetic fields was elaborated. A series of high-resolution 1H NMR spectra of 1,2,3-trichloronaphthalene recorded at magnetic field strength varied over a wide range was analyzed in the framework of a unified approach with high accuracy. The spin-spin coupling constants and the dipole-dipole coupling constants for all pairs of 1H nuclei and the anisotropy and rhombicity parameters of the magnetic susceptibility tensor of the molecule were determined. Ab initio CSGT/RHF quantum chemical calculations of this property using a wide range of conventional diffuse and polarization basis set functions were carried out. Augmentation of the basis set with polarization functions affects the values of the calculated parameters to a lesser extent compared to augmentation with diffuse functions. The results of calculations using the 6-311G(df) and 6-311++G(df) basis sets are in good agreement with the experimental values of the magnetic susceptibility anisotropy for 1,2,3-trichloronaphthalene. The advantages of the method proposed and specific features of the effects of orientation by magnetic field as a new source of information on the structure of molecules in solution are discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1309–1317, August, 2006.  相似文献   

6.
The serendipitous self-assembly of the complex [Mn(III)(2)Zn(II)(2)(Ph-sao)(2)(Ph-saoH)(4)(hmp)(2)] (1),whose magnetic core consists solely of two symmetry equivalent Mn(iii) ions linked by two symmetry equivalent -N-O- moieties, provides a relatively simple model complex with which to study the magneto-structural relationship in oxime-bridged Mn(III) cluster compounds. Dc magnetic susceptibility measurements reveal ferromagnetic (J = +2.2 cm(-1)) exchange resulting in an S = 4 ground state. Magnetisation measurements performed at low temperatures and high fields reveal the presence of significant anisotropy, with ac measurements confirming slow relaxation of the magnetisation and Single-Molecule Magnetism behaviour. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D((Mn(III))) = -3.83 cm(-1). DFT studies on a simplified model complex of 1 reveal a pronounced dependence of the exchange coupling on the relative twisting of the oxime moiety with respect to the metal ion positions, as suggested previously in more complicated [Mn(III)(3)] and [Mn(III)(6)] clusters.  相似文献   

7.
8.
The possible use of a static magnetic field during organic molecular beam deposition of thin molecular films for inducing some preferential growth is discussed and the magnetic properties of diamagnetic molecules and molecular crystals are recalled. Considering prototypical materials, namely anthracene molecules and potassium phthalate substrates, which interact and may give rise to polycrystalline films with specific orientations, we show that in the presence of a magnetic field the films display a macroscopic preferential orientation as a result of minimization of the magnetic energy contribution. A very good agreement between the results of optical spectroscopy, atomic force microscopy, and predictions made on the basis of the anisotropic magnetic susceptibility of anthracene is found.  相似文献   

9.
《Liquid crystals》1999,26(5):649-655
The Q-band electron paramagnetic resonance (EPR) spectrum of the frozen smectic phase of the mesogenic compound bis[N -(4'-n-pentoxyphenyl)-4-n-decyloxysalicylaldiminate] copper(II) is studied. An anisotropic EPR spectrum is observed if freezing from the SmA phase is done in the presence of a magnetic field; the sample tends to orient with the director perpendicular to the magnetic field. The relative intensities of the EPR signal of this exchange coupled system are discussed in relation to the orientational distribution of the molecules. The results appear to be compatible with a biaxial magnetic susceptibility in the SmA phase. This suggests that an ordering of the short axes of the molecules in the plane perpendicular to the director in the SmA mesophase may take place.  相似文献   

10.
Lanthanide complexes of the Schiff base ligand 4-dodecyloxy-N-hexadecyl-2-hydroxybenzaldimine and with perfluorinated alkyl sulfate counterions were synthesised. All of the metal complexes show a smectic A mesophase. The viscosity of this mesophase is much lower than that of analogous compounds with nitrate or alkyl sulfate counterions. The behaviour of these new highly anisotropic molecular magnetic materials was studied using high-temperature X-ray measurements in an external magnetic field and temperature-dependent magnetic susceptibility measurements. The mu(eff)-versus-temperature curve is more comparable with those expected for nematic phases than for smectic phases. The luminescence spectrum of a EuIII compound shows that the values of the second rank crystal field parameters are very large. The huge magnetic anisotropy can be related to this strong crystal-field perturbation.  相似文献   

11.
Effects of external fields such as magnetic field and boundary conditions on supramolecular structure, molecular arrangement and the texture of the ethyl-cyanoethyl cellulose cholesteric liquid crystalline solutions were investigated. It was found that the molecules of (E-CE)C are oriented to perpendicular to the magnetic field and the diamagnetic anisotropy of (E-CE)C is negative. With homeotropic anchoring boundary condition, the molecules are aggregated with focal-conics arrangement the molecules are aggregated with planar arrangement with homogeneous anchoring boundary condition. The effects of the external field on the orientation of the cholesteric phase were influenced by the concentration of the solution because the twist power of the cholesteric was varied with the concentration. And the effects are also restrains by the surface tension of the interphase.  相似文献   

12.
The recent observation of photoinduced radical pairs comprising a flavin radical and an oxidized amino acid residue in various blue-light-sensitive proteins has highlighted the need to gain a more complete understanding of the electronic structure of flavin radicals. In particular, precise knowledge of the anisotropy of the Zeeman interaction quantified by the g-tensor is necessary for attaining an unambiguous identification of flavin radicals by electron paramagnetic resonance (EPR). In a recent study of a protein-bound neutral flavin radical, we have determined the principal values of the g-tensor using high-frequency/high magnetic field EPR performed at 360 GHz/12.8 T. However, in those experiments, the orientation of the principal axes of g could not be unambiguously established with respect to the molecular frame of the isoalloxazine moiety. In this contribution we resolve this ambiguity by pulsed electron-nuclear double resonance (ENDOR) at 95 GHz/3.5 T (W-band). At such high values of the microwave frequency and the magnetic field, the g anisotropy provides improved spectral resolution compared to an ENDOR experiment performed at conventional 9.5 GHz/0.35 mT (X-band). This enables one to utilize Zeeman magnetoselection to obtain single-crystal-like data from disordered samples in frozen solution. Experiments exploiting this orientation selection have allowed us to use the hyperfine coupling of the methyl protons at C(8alpha) of the isoalloxazine ring to determine the angle between the molecular frame and the principal axes of g. Quite surprisingly, the g-tensor in FADH* is not oriented as one would have expected for a 1,3-semibenzoquinone radical. For the latter, the X-axis of g commonly bisects the smaller angle between the two axes along the C=O bonds. In FADH*, the large spin density on N(5) and C(4a) apparently contributes to a significant (44 degrees ) reorientation of the g-tensor axes.  相似文献   

13.
A W-band single-crystal EPR study has been performed on a molecular cluster comprising 19 iron(III) ions bridged by oxo- hydroxide ions, Fe(19), in order to investigate magnetic nanosystems with a behavior in between the one of Magnetic NanoParticles (MNP) and that of Single Molecule Magnets (SMM). The Fe(19) has a disk-like shape: a planar Fe(7) core with a brucite (Mg(OH)(2)) structure enclosed in a "shell" of 12 Fe(III) ions. EPR and magnetic measurements revealed an S = 35/2 ground state with an S = 33/2 excited state lying ~ 8 K above. The presence of other low-lying excited states was also envisaged. Rhombic Zero Field Splitting (ZFS) tensors were determined, the easy axes lying in the Fe(19) plane for both the multiplets. At particular temperatures and orientations, a partially resolved fine structure could be observed which could not be distinguished in powder spectra, due to orientation disorder. The similarities of the EPR behavior of Fe(19) and MNP, together with the accuracy of single crystal analysis, helped to shed light on spectral features observed in MNP spectra, that is a sharp line at g = 2 and a low intensity transition at g = 4. Moreover, a theoretical analysis has been used to estimate the contribution to the total magnetic anisotropy of core and surface; this latter is crucial in determining the easy axis-type anisotropy, alike that of MNP surface.  相似文献   

14.
Abstract— Linear dichroism measurements using magnetic field oriented bovine visual rod outer segments have been made in the UV and visible spectral regions. The results indicate that the planes of the aromatic amino acid residues of rhodopsin tend to be oriented normal to the membrane plane both before and after bleaching. In contrast, the retinal chromophore which tends to be oriented with its absorption oscillator parallel to the membrane plane before bleaching is randomly oriented about 10min after bleaching whereas the membranes remain oriented. Estimates of the anisotropy in the diamagnetic susceptibility of rhodopsin aromatic residues indicate that the anisotropic magnetic properties of these protein residues are sufficient to account for the observed orientation of visual rod outer segments in a homogenous magnetic field.  相似文献   

15.
Using two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric FeII and NiII cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane‐type molecular complexes, [Ni4(μ‐OMe)4(O2CAr4F‐Ph)4(HOMe)8] and [Ni4(μ‐OMe)4(O2CArTol)4(HOMe)6], thus suggesting single‐molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed. From the EPR data, taken at various frequencies and temperatures, zero‐field splitting parameters D, E, and other higher‐order parameters for both cubane samples were extracted. Compared to the symmetric Ni‐cubane, the asymmetric one shows an increase in the D and E values by about 20 %, thereby suggesting structural engineering effects on the magnetic properties. By using the magnetic parameters determined by EPR, a static magnetization curve at 2 K and a temperature dependence of the magnetic susceptibility were simulated. A good agreement between theoretical and experimental data confirms the validity of the values obtained from EPR measurements.  相似文献   

16.
The dimeric complex [Mn(III)(2)(Naphth-sao)(2)(Naphth-saoH)(2)(MeOH)(2)]·4MeOH (1·4MeOH), acts as a simple model complex with which to examine the magneto-structural relationship in polymetallic, oxime-bridged Mn(III) complexes. Dc magnetic susceptibility studies reveal that ferromagnetic exchange is mediated through the heavily twisted Mn-O-N-Mn moiety (J = +1.24 cm(-1)) with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D((Mn(III))) = -3.94 cm(-1). Theoretical studies on simplified model complexes of 1 reveal that calculated values of the exchange coupling and the anisotropy are in excellent agreement with experiment, with the weak ferromagnetism resulting from an accidental orthogonality between the Mn-N-O plane of the first Mn(III) ion and the Jahn-Teller axis of the second Mn(III) ion.  相似文献   

17.
The influence of an intense external field on the dynamics of the nematic liquid crystal phase is investigated using a molecular dynamics simulation for the Gay-Berne nematogen under isobaric-isothermal conditions. The molecular dynamics as a function of the second-rank orientational order parameter P<2> for a system consisting of a nematic liquid crystal in the presence of an intense magnetic field is compared with that of a similar system without the field. The translational motion of molecules is determined as a function of the translational diffusion coefficient tensor and the anisotropy and compared with the values predicted theoretically. The rotational dynamics of molecules is analyzed using the first- and the second-rank orientational time correlation functions. The translational diffusion coefficient parallel with respect to the director is constrained by the intense field, although the perpendicular one is decreased as the P<2> is increased, just as it is in the system without the field. However, no essential effect of the strong magnetic field is observed in the rotational molecular dynamics. Further, the rotational diffusion coefficient parallel with respect to the director obtained from the first-rank orientational time correlation function in the simulation is qualitatively in agreement with that in the real nematic liquid crystalline molecules. The P<2> dependence of the rotational diffusion coefficient for the system with the intense magnetic field shows a tendency similar to that for the system without the field.  相似文献   

18.
The complex Na3[Cu3(mal)3(H2O)] x 8H2O was obtained from evaporation of an aqueous solution containing Cu(OAc)2, malic acid (HO2CCH2CHOHCO2H) and NaOH and was characterised by X-ray diffraction on single crystal, X-band and high-field EPR spectroscopy (HF-EPR) and magnetic susceptibility measurements. The trinuclear complex [Cu3(mal)3(H2O)]3- is trapped in a three-dimensional network with sodium cations. The three copper atoms are connected by alkoxo bridges and form an almost isosceles triangle with Cu...Cu distances of 3.076(1), 3.504(1) and 3.513(1) A. Two of the copper ions are also bridged by an extra aquo ligand. EPR spectroscopy combined with magnetic susceptibility measurements provide a powerful tool to resolve the electronic structure of the complex. The overall magnetic behaviour corresponds to an antiferromagnetically coupled triangular system. The 285 GHz-EPR spectrum (g = 2; 10.18 T) is characteristic of a spin state S = 1/2, with a rhombic anisotropy of [g]. This rhombic pattern allows us to propose that the electronic spin density is delocalised on the three copper ions.  相似文献   

19.
Paramagnetic metal ions can induce molecular alignment with respect to the magnetic field. This alignment generates residual anisotropic chemical shifts (RACS) due to nonisotropic averaging over the molecular orientations. Using a 30 kDa protein-protein complex, the RACS effects are shown to be significant for heteronuclear spins with large chemical shift anisotropies, lanthanide ions with large anisotropic magnetic susceptibility tensors, and measurements at high magnetic field. Therefore, RACS must be taken into account when pseudocontact shifts are measured by comparison of chemical shifts observed between complexes with paramagnetic and diamagnetic lanthanide ions. The results are of particular importance when different pseudocontact shifts measured for the 1HN, 15N, and 13C' spins of a peptide group are used to restrain its orientation with respect to the electronic magnetic susceptibility tensor in structure calculations.  相似文献   

20.
The magnetic orientation has been studied for paramagnetic organic radical crystals 1,3,5-triphenyl-6-oxoverdazyl and 1,5-di-p-tolyl-3-phenyl-6-oxoverdazyl in magnetic fields of 2-80 kOe at temperatures of 77-343 K. The X-ray diffraction measurement has revealed that the crystals are oriented with the crystallographic c axis perpendicular to the field. The anisotropic diamagnetic susceptibility arising from the benzene rings has been estimated for the crystals along the principal magnetic chi 1, chi 2, and chi 3 axes. (The chi 1 axis is at a small angle to the a axis in the monoclinic ac plane, and the chi 3 axis is along the b axis.) Since the paramagnetic susceptibility originating from the verdazyl ring is isotropic (though a large absolute value), it is shown that the magnetic orientation occurs by the anisotropy of the diamagnetic susceptibility in the crystals. The diamagnetic susceptibility is found to have a relation of chi 2 < chi 1 < chi 3 < 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号