首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
构建生物阴极型双室微生物燃料电池,处理老龄垃圾渗滤液。研究了阳极与阴极面积比值对微生物燃料电池产电能力和对老龄垃圾渗滤液处理效果的影响。结果表明,阳极与阴极面积比为1:2、2:2、2:1的3组生物阴极型微生物燃料电池输出电压分别为408、452、396mV,最大电功率密度分别为145.73、237.65、136.50mW/m3,内阻分别为350、200、400Ω,COD的去除率分别为21.18%、20.20%、22.31%。3组微生物燃料电池运行30d后,垃圾渗滤液中氨氮、硝酸盐氮、亚硝酸盐氮浓度均下降,其中,氨氮去除率分别为80.88%、73.61%和66.17%,其去除效果与产电性能相关。  相似文献   

2.
本文通过接种生活污水处理厂的好氧污泥和厌氧污泥,撘建两个双室微生物燃料电池(MFC,Microbial fuel cell),分别以葡萄糖、乙酸钠作为基质,在0.0335 mol•L-1基质浓度下研究不同基质微生物燃料电池的产电性能. 研究表明:葡萄糖体系的阳极半电池阻抗为222 Ω,乙酸钠体系为213.67 Ω,说明两种不同有机基质对电池内阻无明显影响. 葡萄糖、乙酸钠体系的交换电流密度i0分别为3.463 mA•m-2、 5.987mA•m-2;COD去除率分别为50.6%、55.8%;库仑效率分别为42.1%、46.2%. 葡萄糖为基质时最大输出功率密度为394.2 mW•m-2,相应的最大电流密度为1800mA•m-2;乙酸钠为基质时最大输出功率密度为311.9mW•m-2,相应的最大电流密度为1527.5mA•m-2. 葡萄糖代谢过程复杂并不单一,且代谢不彻底,乙酸钠分子简单更容易代谢,因此乙酸钠的库伦效率及COD去除率均高于葡萄糖,由以上数据可以得出葡萄糖为基质的燃料电池产电性能较好.  相似文献   

3.
生物阴极微生物燃料电池不同阴极材料产电特性   总被引:6,自引:0,他引:6  
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m3(117.2 A/m3)和50.3 W/m3(167.2 A/m3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.  相似文献   

4.
研究了无膜生物电化学制氢反应器的设计及产气特性。设计和组装的电化学制氢反应器为无膜电化学制氢反应器。它是以碳毡作为阳极,以负载一定量Ni-Al-Sn(Ni-50%、Al-45%、Sn-5%)合金粉催化剂的石墨板作为阴极,乙酸钠作为电解质。其工作原理是在两极间外加一定电压,阳极区的微生物降解有机物产生电子到达阴极,质子在阴极得到电子生成氢气。主要考察了阳极碳毡数量、环境温度、外加电压等因素对产气速率和氢气选择性的影响。结果表明,当阳极面积为900cm2、环境温度为30℃、外加电压为0.9V时,反应器产气速率最高可达4.21m3/(d·m3),氢气选择性最高为70.4%。  相似文献   

5.
以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 mL、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 mW/m2,内阻为496 Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。  相似文献   

6.
以甲酸为燃料、 Fe3+为氧化剂组成了一种新型的甲酸/铁离子燃料电池, 阳极催化剂为多壁碳纳米管(MWCNT)或β-环糊精修饰的MWCNT(β-CD-MWCNT)负载的金属钯或钯锡纳米颗粒: PdSn/MWCNT, Pd/β-CD-MWCNT和PdSn/β-CD-MWCNT. 运用循环伏安(CV)和计时电流(CA)等技术研究了各催化剂在碱性条件下对甲酸氧化反应的电催化活性. 结果表明, 加入适量的金属锡能促进钯对甲酸的电催化氧化, 甲酸氧化电位提前, 电流密度增加; 环糊精的改性对催化剂电催化活性有一定提升. 将上述催化剂制成电池阳极片, 碳粉制成电极阴极片, 组成甲酸/铁离子燃料电池并测试其放电性能. 结果表明, 电池的开路电压在0.981.20 V之间; 以PdSn/β-CD-MWCNT为阳极时, 其最大放电电流密度达50 mA/cm2, 最大功率密度达12.6 mW/cm2, 远优于以Pd/C为阳极的电池性能.  相似文献   

7.
为寻找质优价廉的析氢催化剂,本研究以废旧金属网为单室微生物电解池(MEC)阴极,在不同外加电压下考察其制氢性能. 同时利用16S rDNA扩增测序技术分析原接种污泥、MFC和MEC阳极微生物的菌落特点. 实验结果表明,随着外加电压的增大,MEC产生的最大电流密度和周期运行时间分别呈现增大和缩短的趋势. 外加0.7 V电压时,废旧金属网阴极MEC的氢气产率和电能回收率分别达到0.330±0.012 m3H2·m-3·d-1和177.0±5.6%,远高于0.5 V时的数值,与0.9 V时相差不大. 废旧金属网阴极MEC的产氢能力可以和Pt/C阴极MEC相媲美,且具有良好的运行稳定性. 16S rDNA扩增测序结果显示培养环境对微生物的富集与淘汰有很大影响. 在外加电场环境中MEC阳极的优势菌落地杆菌属(Geobacter)得到很大程度富集,相对丰度高达79.4%以上.  相似文献   

8.
制备了阳极负载型LDC-LSGM双层电解质薄膜电池.考察了单电池在分别使用甲醇和氢气两种燃料时,不同温度下的I~V性能.以甲醇为燃料,以空气为氧化剂时,800℃下的最大输出功率密度为1.07W/cm2,而使用氢气为燃料时,最大输出功率密度为1.54W/cm2.通过交流阻抗研究了造成甲醇性能降低的可能原因.结果表明,以甲醇作为燃料时,单电池性能较氢气作为燃料时低.  相似文献   

9.
用改良的浸渍法合成了多种不同合金度的碳载PdCu纳米粒子, 考察其对氧还原和氢氧化反应的催化行为, 并择优应用到质子交换膜燃料电池(PEMFC)中. 研究发现, 阳极采用Pd80Cu20/C催化剂, 阴极采用Pd90Cu10/C催化剂组装的单电池在65℃下最大功率密度接近204 mW/cm2.  相似文献   

10.
以4-巯基苯甲酸修饰纳米金粒子作为固酶载体和导电基体构建了新型纳米结构固酶葡萄糖/O2燃料电池,其制备简单,长期使用性能稳定。利用纳米金粒子通过表面修饰基团和酶分子活性中心附近疏水结合位之间的相互作用固定葡萄糖氧化酶(GOx)和漆酶(Lac)分子,分别制备了固酶阳极-4-巯基苯甲酸功能化纳米金粒子固定葡萄糖氧化酶修饰金盘电极GOx/4-MBA@GNP/Au和固酶阴极-4-巯基苯甲酸功能化纳米金粒子固定漆酶修饰金盘电极Lac/4-MBA@GNP/Au。电化学实验结果表明,两种电极在不引入任何外加电子中介的条件下,均可以实现酶活性中心-纳米金粒子之间的直接电子迁移,而且具有较快的催化反应能力(固酶阳极和阴极的转化速率分别为1.3和0.5 s-1;催化葡萄糖氧化和氧气还原的起始电位分别为-0.23和0.76 V)。评估了固酶阳极和阴极组装成的纳米结构固酶葡萄糖/O2燃料电池的能量输出性能。该燃料电池在没有Nafion薄膜和阳极无N2气保护下,开路电压和最大输出能量密度分别可达0.56 V和760.0 μW/cm2,使用一周后输出能量密度仍然可以达到最初值的~88%。进一步测试结果显示,该燃料电池呈现出与游离漆酶类似的pH依赖关系和热稳定性,这些实验结果均暗示:影响整个酶燃料电池性能的关键在于漆酶基阴极催化氧还原的过程。此外,这种燃料电池的性能虽然受到共存干扰物抗坏血酸的影响,但在人类血清中测试结果显示其仍然具有较高的输出能量密度(132.0 μW/cm2,开路电压0.40 V)。本文研究结果给出了设计高性能葡萄糖/O2燃料电池的新思路,同时也为研究固酶燃料电池的构效关系提供了实验依据和有价值的启示。  相似文献   

11.
Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemical properties of the material were studied in different potential windows of 3.5―2.0 V and 4.3―2.0 V. An irreversible transformation to spinel phase was observed in the initial several cycles, which was more prominent on cycling at 4.3―2.0 V. Electrochemical impedance spectroscopy showed that the Li+ diffusion coefficient of the material was about 2×10–9 cm2/s. Li0.33MnO2 showed a reversible discharge capacity of 140 and 200 mA·h/g in the potential windows of 3.5―2.0 V and 4.3―2.0 V, respectively. But the capacity retention at 4.3―2.0 V was poor due to the thicker spinel layer formed on the material surface.  相似文献   

12.
以酸性磷酸酯为掺杂剂对本征态聚苯胺(EB)进行掺杂,制备了可在聚氨酯和聚氨酯丙烯酸酯中进行纳米分散的导电聚苯胺(ES),其粒径分布在80~750 nm之间可控。 在此基础上,制备了不含重金属的紫外光-热双固化聚苯胺防腐涂料。 该防腐涂料先后经过3~5 s紫外光固化和80 ℃下1~3 min的热固化,即可完成紫外光-热双固化过程。 由于ES与聚氨酯或聚氨酯丙烯酸酯之间是不相容体系,因此随着ES质量分数的增大,会导致ES的团聚,分散粒径增大。 当ES质量分数从1.0%增大到5.0%时,ES的粒径从80~119 nm增加到500~750 nm。 ES的分散粒径增大会导致防腐涂层的致密性变差,降低防腐效果。 与普通紫外光固化聚苯胺防腐涂层相比,当ES为1.0%时,紫外光-热双固化防腐涂层在质量分数为3.5%的NaCl水溶液中浸泡2160 h后,其0.1 Hz下的绝对阻抗值(|Z|0.1 Hz)仍高于1.0×108 Ω·cm2,优于普通紫外光固化聚苯胺防腐涂层的|Z|0.1 Hz(1.0×107 Ω·cm2),表明紫外光-热双固化涂层的防腐效果有了显著改善。 经过500 h划叉中性盐雾试验后,普通紫外光固化防腐涂层的板面出现了锈蚀宽度小于1 mm的锈蚀,而紫外光-热双固化防腐涂层经过500 h划叉中性盐雾试验,板面没有出现生锈、起泡的现象,表明紫外光-热双固化路线对提高涂层的防腐性能具有较大的价值。  相似文献   

13.
以不同载量的MnO_2/rGO和Pt/C修饰阴极电极构建了生物阴极型双室微生物燃料电池(MFC),考察了不同阴极催化剂修饰MFC对其产电性能以及老龄垃圾渗滤液主要污染物去除效果的影响。结果表明,以MnO_2/rGO修饰MFC阴极电极材料,能显著提高MFC产电性能及对老龄垃圾渗滤液中污染物去除效果;输出电压为372 mV,功率密度为194 mW/m~3(是未经催化剂修饰MFC的两倍),内阻为264Ω,化学需氧量(COD)和氨氮(NH_3-N)去除率分别为58.68%和76.64%。当MnO_2/rGO载量为.0 mg/cm~2时,MFC性能与负载Pt/C的MFC性能接近,但构建成本却明显降低。  相似文献   

14.
Perovskite oxide Ba0.5Sr0.5Fe0.9Nb0.1O3-δ(BSFN) as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells(IT-SOFCs) on the Ce0.5Sm0.2O1.9(SDC) and La0.9Sr0.1Ga0.8Mg0.23O3-δ(LSGM) electrolytes was prepared and investigated. The single phase BSFN oxide with a cubic perovskite structure and relatively high elec- trical conductivities was obtained after sintering at 1250℃ for 10 h in air. The BSFN cathode exhibited excellent chemical stability on the SDC and LSGM electrolytes at temperatures below 950 ℃. The area specific resistance of the BSFN cathode on the SDC and LSGM electrolytes were 0.024 and 0.021 Ω·cm2 at 800℃, respectively. The maximum power densities of the single cell with BSFN cathode in 300 μm-thick SDC and LSGM electrolytes achieved 414 and 516 mW/cm2 at 800℃, respectively. These results show that the BSFN material is a promising co- bait-free cathode candidate to be used in IT-SOFCs. A combination of the BSFN cathode and LSGM electrolyte is preferred owing to its excellent electrochemical performance.  相似文献   

15.
采用原位氧化技术调整316L不锈钢(SS316L)基体元素Cr和Ni在界面的浓度和分布, 形成了Ni和Cr富集改性界面. 应用计时电位技术, 通过Cr和Ni改性层催化草酸溶液中的苯胺单体在其表面吸附并聚合, 在SS316L表面沉积了附着力良好的聚苯胺(PANI)膜. 与SS316L相比, 表面富Ni-Cr的SS316L在涂覆PANI膜后, 在80 ℃ 0.5 mol/L H2SO4+5 mg/L F-溶液中阳极和阴极的腐蚀电位分别提高470和500 mV, 维钝电流均下降2~3个数量级; 在模拟质子交换膜燃料电池运行环境中, 经36000 s恒电位极化, 其阳极和阴极的腐蚀电流分别下降约1和2个数量级, 腐蚀速度分别约为6~9 和< 5 μA/cm2; 在1.4 MPa压力下, 聚苯胺膜层与Toray 060碳纸间接触电阻下降约250 mΩ·cm2. SS316L表面形成富Ni-Cr改性层并涂覆聚苯胺膜后, 其耐蚀性和导电性均明显优于原始SS316L, 这主要取决于富Ni-Cr改性层的结构、 组成和聚苯胺膜的厚度.  相似文献   

16.
空气阴极生物燃料电池电化学性能   总被引:12,自引:0,他引:12  
为提高生物燃料电池(MFC)的输出功率, 降低内阻和有机物处理成本, 实验以空气电极为阴极, 泡沫镍(铁)为阳极,葡萄糖模拟废水为基质构建了直接空气阴极单室生物燃料电池, 考察了电池的电化学性能. 结果表明, MFC的开路电压为0.62 V, 内阻为33.8 Ω, 最大输出功率为700 mW·m-2 (4146 mW·m-3污水), 电子回收率20%. 放电曲线、循环伏安测试表明, MFC首次放电比容量和比能量分别为263 mAh·g-1 COD(化学需氧量)和77.3 mWh·g-1 COD, MFC充放电性能及稳定性均较好. 电化学交流阻抗谱(EIS)分析表明, 随放电时间的延长, 电池阻抗增大, 这是导致电池输出电压逐渐降低的原因之一. MFC运行8 h, COD的去除率为56.5%, 且COD的降解符合表观一级反应动力学.  相似文献   

17.
For the first time, the Fe-Ni LDH nanosheets were prepared through simple one-step hydrothermal treatment of Fe-Ni bimetallic foam both as the substrate and Fe/Ni sources. The ratio of Ni/Fe elements played the important role in realizing the optimal catalytic activities for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). An alkaline water electrolyzer was constructed with the Fe-Ni hydroxide nanosheets/Fe-Ni alloy foam-60% Fe as anode and Ni(OH)2/Fe-Ni alloy foam-25% Fe as cathode, which displays superior electrolytic performance (affording 10 mA/cm2 at 1.62 V) and lasting durability.  相似文献   

18.
The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was –0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.  相似文献   

19.
氢能具有能量密度高、清洁无污染等优势,被认为是理想的能源,受到越来越多的关注.利用太阳能和风能等可再生能源电解水制氢是一种极具发展前景的可以规模化获取清洁氢气的能源技术,其挑战在于如何降低电能消耗并实现稳定地高速电解制氢.由于电解水阳极析氧反应(OER)涉及四电子转移,动力学过程缓慢,是电解水过程的决速步骤.因此,开发高效、廉价、稳定的OER电催化剂对于推动电解水制氢的应用至关重要.硫族化合物具有良好的导电性,对OER中间体表现出适宜的吸附/脱附能力,是一类高活性的析氧电催化剂.但在析氧反应中硫族化合物会不可避免地发生氧化,导致其结构坍塌,使其性能发生大幅衰减.NiOOH被认为是Ni(OH)2、NiSe和NiS等镍基电催化剂析氧过程中的真实催化活性位点,在析氧反应过程中表现出优异的稳定性.因此,结合硫族化合物的高催化活性和羟基氧化物的高稳定性,将有望获得高效稳定的析氧电催化剂.本文提出了一种选择性硒掺杂的策略,实现了不锈钢基底上NiFe2O4/NiOOH异质结的选择性硒掺杂,获得了硒掺杂浓度可调的NiFe2O4-xSex/NiOOH异质结电催化剂,大幅提升了其电催化析氧性能.采用X射线衍射技术、拉曼光谱、扫描电镜和透射电镜技术等对NiFe2O4/NiOOH异质结的结构、形貌和组分进行了表征.利用X射线光电子能谱和透射电镜的能量色散光谱仪对硒掺杂产物的元素组成和分布进行了分析.结果表明,硒元素仅掺杂到NiFe2O4纳米颗粒中,而NiOOH纳米片骨架保持不变,保证了催化剂在析氧过程的稳定性.NiFe2O4-xSex/NiOOH异质结电极在1 M KOH溶液中表现出较好的析氧性能,达到10和500 mA cm?2电流密度所需要的过电位分别仅为153和259 mV,塔菲尔斜率为22.2 mV dec?1.更重要的是,NiFe2O4-xSex/NiOOH电催化剂的电化学性能稳定性,计时电流测试表明,在10~400 mA cm?2电流密度下可稳定工作.稳定性测试表明,催化剂在100 mA cm?2的电流密度下可稳定工作至少300 h.电催化过程研究表明,选择性硒掺杂提高了界面间电荷输运能力,改善了电极表面的浸润性,优化了活性位点的电子结构,从而大幅提高催化剂的电催化性能.密度泛函理论计算结果表明,硒掺杂会导致NiFe2O4表面晶格发生畸变,显著改善了反应中间体的吸附过程,因此明显降低了析氧反应决速步骤的能垒.本研究结果将为未来探索高效和稳定的电催化剂提供新的研究思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号