首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
燃料电池因其高的能量转化效率和无污染的特点而被认为是目前最有发展前景的高效清洁发电技术,然而燃料电池迟缓的阴极氧还原反应(ORR)极大地降低了其整体性能.目前,铂碳(Pt/C)仍然是催化ORR最有效的催化剂.但是,由于Pt的价格很高以及其稳定性差等缺点极大地限制了燃料电池的大规模化应用,因此设计与开发廉价高效稳定的ORR电催化剂对实现燃料电池的大规模商业化应用具有重要的意义.在过去的几十年中,研究发现Pt和其他的非贵金属形成合金,如Pt-Fe,Pt-Ni和Pt-Co等不仅可以降低Pt的用量,而且也可以使所得催化剂具有较高的ORR活性.此外,研究发现核-壳结构也可以提高铂基ORR催化剂的活性与稳定性.但是,这些催化剂的制备一般会使用毒性和危险性较高的有机化学试剂并且其制备过程繁杂,因此并不适用于大规模的实际生产.从这个角度来说,开发一种简易的方法来制备高效廉价的ORR催化剂显得尤为重要.之前的研究表明,Pt的载体对提高所得ORR催化剂来说非常关键.可以发现大部分载体都是经过改进的碳材料,如微孔/介孔材料,杂原子掺杂的石墨烯以及缺陷碳等.尤其是我们课题组最近提出的一种缺陷催化机理表明,在碳材料中特定类型的缺陷(如缺陷活性炭(D-AC)和缺陷石墨烯等)可以使纯的碳材料具有很高的电催化活性.尽管D-AC的ORR催化活性在不含金属的催化剂中位居前列,但是其催化性能仍然比商业化的Pt/C差.鉴于此,如果我们可以通过使用具有较高ORR催化活性的D-AC作为Pt的载体而降低Pt的用量,但并不牺牲其催化活性,这将是一个很具有前景的方法来解决昂贵ORR催化剂的问题,进而有可能实现燃料电池的大规模化生产.在本研究中,我们通过一种简易的液相浸渍法以D-AC作为Pt的载体而制备了一种高效的ORR催化剂.具体来说,我们通过调节合成过程中的还原温度实现了控制所得催化剂中Pt颗粒尺寸的目的,同时我们也对催化剂中的Pt含量对其催化性能的影响进行了探讨.研究表明,所得催化剂中Pt的颗粒尺寸以及其结晶性都可能影响其ORR催化活性.更为重要的是,所得样品D-AC@5.0%Pt中含有约5 wt%的Pt,然而其在碱性条件下的ORR催化活性已经超过了商业化的含有20 wt%Pt的Pt/C,例如其起始电位和半波电位都优于商业化的Pt/C,并且其稳定性也比商业化的Pt/C好.除此之外,D-AC@5.0%Pt在催化ORR的过程中表现出了一种一步四电子的反应路径,而且中间产物过氧化氢的产率很低.所得催化剂D-AC@5.0%Pt优异的ORR反应活性表明D-AC中的特殊缺陷以及负载的Pt纳米颗粒都对提高其催化活性具有很大的贡献,同时也说明选择合适的载体对提高电催化剂的活性至关重要.实验结果还表明,D-AC@5.0%Pt在酸性条件下的ORR催化活性也有一定的提高,虽然比商业化的Pt/C要差一些.更进一步减小Pt的颗粒尺寸到亚纳米甚至原子级别可能会明显地提高其在酸性电解液中的ORR催化活性.  相似文献   

2.
燃料电池因其高的能量转化效率和无污染的特点而被认为是目前最有发展前景的高效清洁发电技术,然而燃料电池迟缓的阴极氧还原反应(ORR)极大地降低了其整体性能.目前,铂碳(Pt/C)仍然是催化ORR最有效的催化剂.但是,由于Pt的价格很高以及其稳定性差等缺点极大地限制了燃料电池的大规模化应用,因此设计与开发廉价高效稳定的ORR电催化剂对实现燃料电池的大规模商业化应用具有重要的意义.在过去的几十年中,研究发现Pt和其他的非贵金属形成合金,如Pt-Fe,Pt-Ni和Pt-Co等不仅可以降低Pt的用量,而且也可以使所得催化剂具有较高的ORR活性.此外,研究发现核-壳结构也可以提高铂基ORR催化剂的活性与稳定性.但是,这些催化剂的制备一般会使用毒性和危险性较高的有机化学试剂并且其制备过程繁杂,因此并不适用于大规模的实际生产.从这个角度来说,开发一种简易的方法来制备高效廉价的ORR催化剂显得尤为重要.之前的研究表明,Pt的载体对提高所得ORR催化剂来说非常关键.可以发现大部分载体都是经过改进的碳材料,如微孔/介孔材料,杂原子掺杂的石墨烯以及缺陷碳等.尤其是我们课题组最近提出的一种缺陷催化机理表明,在碳材料中特定类型的缺陷(如缺陷活性炭(D-AC)和缺陷石墨烯等)可以使纯的碳材料具有很高的电催化活性.尽管D-AC的ORR催化活性在不含金属的催化剂中位居前列,但是其催化性能仍然比商业化的Pt/C差.鉴于此,如果我们可以通过使用具有较高ORR催化活性的D-AC作为Pt的载体而降低Pt的用量,但并不牺牲其催化活性,这将是一个很具有前景的方法来解决昂贵ORR催化剂的问题,进而有可能实现燃料电池的大规模化生产.在本研究中,我们通过一种简易的液相浸渍法以D-AC作为Pt的载体而制备了一种高效的ORR催化剂.具体来说,我们通过调节合成过程中的还原温度实现了控制所得催化剂中Pt颗粒尺寸的目的,同时我们也对催化剂中的Pt含量对其催化性能的影响进行了探讨.研究表明,所得催化剂中Pt的颗粒尺寸以及其结晶性都可能影响其ORR催化活性.更为重要的是,所得样品D-AC@5.0%Pt中含有约5 wt%的Pt,然而其在碱性条件下的ORR催化活性已经超过了商业化的含有20 wt%Pt的Pt/C,例如其起始电位和半波电位都优于商业化的Pt/C,并且其稳定性也比商业化的Pt/C好.除此之外,D-AC@5.0%Pt在催化ORR的过程中表现出了一种一步四电子的反应路径,而且中间产物过氧化氢的产率很低.所得催化剂D-AC@5.0%Pt优异的ORR反应活性表明D-AC中的特殊缺陷以及负载的Pt纳米颗粒都对提高其催化活性具有很大的贡献,同时也说明选择合适的载体对提高电催化剂的活性至关重要.实验结果还表明,D-AC@5.0%Pt在酸性条件下的ORR催化活性也有一定的提高,虽然比商业化的Pt/C要差一些.更进一步减小Pt的颗粒尺寸到亚纳米甚至原子级别可能会明显地提高其在酸性电解液中的ORR催化活性.  相似文献   

3.
采用半池考察了Pt/C催化剂在含不同浓度甲醇的0.5mol/L硫酸中的氧还原活性(ORR).研究发现,当甲醇浓度为0.1mol/L时,Pt/C催化剂的ORR活性最高,在催化层上热压商品NafionNRE-212膜后也出现同样趋势.线性扫描伏安曲线显示,压膜前后的Pt/C催化剂的ORR活性在含0.1mol/L甲醇的0.5mol/L硫酸中几乎没有变化.电化学阻抗谱结果表明,在该溶液中,Nafion膜的电阻比在其它电解液中低,这可能是导致Pt/C催化剂ORR活性提高的主要原因.有必要关注Nafion膜的这一异常性质并通过特殊设计后用于电池堆,以提高燃料电池性能.  相似文献   

4.
分别在酸性和碱性电解质中研究了界面合金化的纳米Ag承载Pt纳米结构催化剂Pt0.5^Ag-B/C(Pt/Ag原子比为0.5)对氧还原反应(ORR)的电催化特点.结果表明,该催化剂对ORR的半波电势(E1/2)与通常的Pt/C催化剂(E-TEK公司)相当,但前者的本征电催化活性是后者的近两倍.与未合金化的Pt0.5^Ag-A/C相比,在Pt0.5^Ag-B/C催化剂中形成的合金化的Pt/Ag界面不仅使ORR的E1/2正移,而且明显提高了贵金属Pt的分散度或利用率.  相似文献   

5.
为了促进燃料电池的广泛应用,必须研发一种高效、经济的氧还原(ORR)催化剂材料替代目前使用的昂贵的Pt基催化剂. 本文合成了NiO@rGO、Pd-NiO@rGO和Ag-NiO@rGO三种催化剂材料,并对其ORR催化性能进行了比较研究. 结果表明,三种材料均具有催化ORR的能力,但与NiO@rGO相比,Pd-NiO@rGO和Ag-NiO@rGO展示了更加优异的性能,主要表现在其4电子转移ORR过程、起始电位增加,中间产物的产率降低和稳定性提高. 其中,Pd-NiO@rGO作为ORR催化剂的性能最好.  相似文献   

6.
《电化学》2020,(2)
为了促进燃料电池的广泛应用,必须研发一种高效、经济的氧还原(ORR)催化剂材料替代目前使用的昂贵的Pt基催化剂.本文合成了NiO@rGO、Pd-NiO@rGO和Ag-NiO@rGO三种催化剂材料,并对其ORR催化性能进行了比较研究.结果表明,三种材料均具有催化ORR的能力,但与NiO@rGO相比,Pd-NiO@rGO和Ag-NiO@rGO展示了更加优异的性能,主要表现在其4电子转移ORR过程、起始电位增加,中间产物的产率降低和稳定性提高.其中,Pd-NiO@rGO作为ORR催化剂的性能最好.  相似文献   

7.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:2,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

8.
制作双催化层结构的PEMFC电极.该双催化层由含有Nafion的内催化层、无Nafion的外催化层组成.循环伏安测试表明,未与Nafion直接接触的外催化层Pt/C催化剂也参与发生在"Pt/Nafion"界面氢原子的吸脱附反应和Pt表面含氧粒子的电化学氧化还原.当电势扫描速率较低时,未与Nafion直接接触的外层Pt/C催化剂,其对氢脱附电流的贡献和直接与Nafion接触的内催化层的Pt/C催化剂大致相当.以双催化层电极作PEMFC阴极,单电池(PEMFC)极化曲线测试表明,其阴极外催化层能明显地提高该单电池在活化极化区的输出性能.进一步证明了PEMFC阴极外催化层不与Nafion直接接触的Pt/C催化剂可通过其表面吸附含氧粒子的表面扩散参与发生在"Pt/Nafion"界面氧的电化学还原反应.上述实验为设计PEMFC电极提供了一定的新思路.  相似文献   

9.
分别利用液相热解法和浸渍还原法制备了碳载钯纳米催化剂(Pd/C),并研究了其对氧还原反应的电催化活性。与浸渍还原法相比,液相热解法得到的Pd/C催化剂虽然粒径较大,但表现出较好的氧还原反应(ORR)活性和稳定性.在所制备的Pd/C催化剂基础上,通过置换欠电势沉积的Cu原子单层,获得了Pt单层修饰的Pd/C催化剂,其ORR活性较Pd/C催化剂有显著提高,且与纯Pt/C催化剂接近,而其耐久性则较纯Pt/C催化剂有显著提升,显示出Pt单层催化剂的潜在优势.  相似文献   

10.
陈鑫  鄢慧君  夏定国 《化学学报》2017,75(2):189-192
应用密度泛函理论,在DZP基组水平上研究了(5,5)型锗纳米管催化的氧还原反应(ORR)的性能以及可能的催化机理.计算结果表明,ORR在锗纳米管上可能经历O2解离、OOH解离、H2O2解离三种可能机理.无论是对哪种机理,整个ORR均遵循四电子反应路径.评估ORR性能的重要中间产物O和OH的吸附能分别为-4.33 eV和-2.21 eV,这与它们在贵金属铂(Pt)上的吸附能非常接近.此外,在GeNT上,整个ORR过程中最后一步生成的H2O分子的吸附能仅仅为-0.05 eV,比O2分子的吸附能弱得多,意味着整个ORR催化循环在GeNT上可以顺利更替.因此,联合ORR的反应能量数据和中间产物的吸附数据,可以认为(5,5)型锗纳米管具有类Pt的催化性能.溶剂效应计算结果表明,一些反应中间产物的吸附结构,如O中间体会在很大程度上受到溶剂效应的影响.对所研究的锗纳米管来说,溶剂效应可以促进其催化的ORR进程.  相似文献   

11.
Improving both the activity and the stability of the cathode catalyst in platinum-based polymer electrolyte fuel cells is a key technical challenge. Here, we synthesize a high surface area meso-structured Pt thin film that exhibits higher specific activity for the oxygen reduction reaction (ORR) than commercial carbon-supported Pt nanoparticles (Pt/C). An accelerated stability test demonstrates that the meso-structured Pt thin film also displays significantly enhanced stability as compared to the commercial Pt/C catalyst. Our study reveals the origin of the high turnover frequency (TOF), and excellent durability is attributed to the meso-structure, which yields a morphology with fewer undercoordinated Pt sites than Pt/C nanoparticles, a key difference with substantial impact to the surface chemistry. The improved catalyst activity and stability could enable the development of a high-performance gas diffusion electrode that is resistant to corrosion even under the harsh conditions of start-up, shut-down, and/or hydrogen starvation.  相似文献   

12.
In this paper, we report the use of binary carbon supports (carbon nanotubes (CNTs) and active carbon) as a catalyst layer for fabricating gas diffusion electrodes. The electrocatalytic properties for the oxygen reduction reaction (ORR) were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in an alkaline electrolyte. The binary-support electrode exhibits better performance than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and active carbon is 50:50. The results from the electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity, and fast ORR kinetics. Furthermore, the effect of CNT support on the electrocatalytic properties of Pt nanoparticles for binary-support electrodes was also investigated by different loading-reduction methods. The electrocatalytic activity of the binary-support electrodes is improved dramatically by Pt loading on CNT carbon support, even at very low Pt loading. Additionally, the EIS analysis results indicate that the process of ORR may be controlled by diffusion of oxygen in the electrode thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

13.
The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ORR-PCET as a function of pH, electrolyte, and electrode potential remain unresolved, even on the prototypical Pt(111) surface. Herein, we integrate advanced experiments, simulations, and theory to uncover the mechanism of the cation effects on alkaline ORR on well-defined Pt(111). We unveil a dual-cation effect where cations simultaneously determine i) the active electrode surface by controlling the formation of Pt−O and Pt−OH overlayers and ii) the competition between inner- and outer-sphere PCET steps. The cation-dependent transition from Pt−O to Pt−OH determines the ORR mechanism, activity, and selectivity. These findings provide direct evidence that the electrolyte affects the ORR mechanism and performance, with important consequences for the practical design of electrochemical systems and computational catalyst screening studies. Our work highlights the importance of complementary insight from experiments and simulations to understand how different components of the electrochemical interface contribute to electrocatalytic processes.  相似文献   

14.
A novel gas diffusion electrode using binary carbon supports (carbon nanotubes and active carbon) as the catalyst layer was prepared. The electrochemical properties for oxygen reduction reaction (ORR) in alkaline electrolyte were investigated by polarization curves and electrochemical impedance spectroscopy. The results show that the binary-support electrode exhibits higher electrocatalytic activity than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and activated carbon is 50 ∶50. The results from their electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity and fast ORR kinetics. The electrocatalytic activity of binary-support electrodes is obviously improved by the deposition of Pt nanoparticles on carbon nanotubes, even at very low Pt loading (45.7 μg/cm2). In addition, the EIS analysis results show that the process of ORR may be controlled by diffusion of oxygen in the thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

15.
The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.  相似文献   

16.
To accelerate the kinetics of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells, ultrafine Pt nanoparticles modified with trace amounts of cobalt were fabricated and decorated on carbon black through a strategy involving modified glycol reduction and chemical etching. The obtained Pt36Co/C catalyst exhibits a much larger electrochemical surface area (ECSA) and an improved ORR electrocatalytic activity compared to commercial Pt/C. Moreover, an electrode prepared with Pt36Co/C was further evaluated under H2-air single cell test conditions, and exhibited a maximum specific power density of 10.27 W mgPt?1, which is 1.61 times higher than that of a conventional Pt/C electrode and also competitive with most state-of-the-art Pt-based architectures. In addition, the changes in ECSA, power density, and reacting resistance during the accelerated degradation process further demonstrate the enhanced durability of the Pt36Co/C electrode. The superior performance observed in this work can be attributed to the synergy between the ultrasmall size and homogeneous distribution of catalyst nanoparticles, bimetallic ligand and electronic effects, and the dissolution of unstable Co with the rearrangement of surface structure brought about by acid etching. Furthermore, the accessible raw materials and simplified operating procedures involved in the fabrication process would result in great cost-effectiveness for practical applications of PEMFCs.  相似文献   

17.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

18.
本文报导了一种H2Pc-Pt/C纳米复合物电化学催化剂,采用TEM、XRD、ICP对其组成与结构进行了表征. 在含有0.5 M甲醇的硫酸溶液中,H2Pc-Pt/C-Nafion?催化电极催化氧还原反应的起始电位比由商购Pt/C-JM与Nafion?制备的Pt/C-JM-Nafion?催化电极提高了200 mV,其催化氧还原反应的比活性是Pt/C-JM-Nafion?催化电极的7倍,表明其具有优良的耐醇性和对氧还原反应的高催化活性及良好的选择性. 不同于FePc,H2Pc与Nafion?在乙醇中不能形成可溶性配合物,H2Pc-Pt/C-Nafion?催化电极的耐醇性主要得益于H2Pc微晶的覆盖作用和H2Pc微晶/Pt边界上活性位点对氧还原反应的高催化活性及良好的选择性.  相似文献   

19.
One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ~3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号