共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。 相似文献
3.
硅基负极材料具有最高的储锂容量和较低的电压平台,是最具潜力的下一代锂离子电池负极材料之一.然而,硅负极巨大的体积效应、较低的电导率以及与常规电解液的不相容性限制了其商业化应用.目前,提高硅负极性能的措施主要包括:通过设计硅基负极材料的组成和微观结构来抑制其体积变化并改善导电性,研发适于硅负极的粘结剂和电解液添加剂,探索... 相似文献
4.
锂离子电池硅基负极粘结剂发展现状 总被引:2,自引:0,他引:2
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向. 相似文献
5.
锂离子电池是目前电脑、通讯、消费电子品以及未来电动车动力系统的主要能源。硅基负极材料因其具有较高理论比容量(4200 mAh·g-1,为石墨10倍以上),被视为最理想的下一代锂离子电池负极材料。然而硅负极在充放电过程中巨大的体积膨胀造成极片材料的粉化脱落、SEI膜的持续增长、正极锂离子的不断消耗,以及现有商业化粘结剂与硅表面较弱的相互作用等诸多缺陷,造成电池容量快速的衰减,阻碍了硅基材料在锂离子电池中的商业化应用。本文对硅基负极材料及其相关电池材料,如硅材料结构、粘结剂、电解液及添加剂等,进行了系统全面的总结。最后对硅基材料目前研究进展和未来发展方向做出总结与评述,以期为下一代硅基电池体系发展提供参考。 相似文献
6.
通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构. 在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构. 材料中包含的无定形碳组分可提高硅/硅氧碳结构的电导性能. 这种复合负极结构在0.3C电流充放电情况下,不仅能发挥出637.3 mAh·g-1的比容量,而且在经过100 周的充放电循环后,其容量保持率也达到86%. 这种新型硅基负极材料的设计为其他功能材料的设计提供了一种潜在可能的方法. 相似文献
7.
Si基负极材料具有比容量高和嵌锂电势低等优点,已成为提高锂离子电池能量密度的关键材料.但其巨大的体积膨胀和与电解液间的副反应造成了严重的界面问题.本文从硅负极界面的定义出发,对界面问题、成因和形成机制进行了综合评述;并分别从结构优化、人工界面构筑、电解液配方优化和固态电池中的界面问题4个方面阐述了硅基负极界面工程的发展现状;最后,对硅基负极界面问题的解决方案进行了总结与展望. 相似文献
8.
9.
硅材料作为锂离子电池负极材料具有比容量大的优点,是高容量锂离子负极材料的研究热点之一。论文综述了近年来锂离子电池硅负极材料的研究进展。分别对硅和含硅材料作为锂离子电池负极材料的发展过程、充放电特性、储锂机理及影响其储锂的各因素进行了分析和总结,并对其存在的问题进行了分析。探讨了采用不同复合物、不同制备方法和合成硅化物等改性方法来提高其循环性能的可行性。指出纳米硅基复合物将是硅负极材料最有希望的发展方向。 相似文献
10.
硅基负极材料是提升锂离子电池能量密度的重要材料基础,负极粘结剂性能的优劣是影响硅基负极材料推广应用的关键因素。本文全面综述了锂离子电池负极粘结剂材料的研究及应用进展,详细阐述了粘结剂对于硅基负极材料及锂离子电池电化学性能的影响,简要介绍了目前常用的羧甲基纤维素(CMC)、聚丙烯酸(PAA)、海藻酸盐(Alg)三种硅基负极粘结剂的特点,重点讨论了聚酰亚胺(PI)材料作为负极粘结剂的优势,其分子结构可设计、形变可逆、高强高模等优点有望抑制硅基负极体积膨胀并避免颗粒粉化,系统综述了目前PI在硅基负极粘结剂中的研究进展。在此基础上,为PI粘结剂后续研究提供了新的方法策略,为锂离子电池负极粘结剂的开发和应用提供了新的设计理念。 相似文献
11.
采用磁控溅射法在铜箔集流体上沉积得到了厚度约2 μm的非晶硅薄膜。X-射线衍射(XRD)、高分辨率透射电镜(HRTEM)和选区电子衍射(SAED)分析表明,该薄膜为非晶态。扫描电镜(SEM)结果表明,该硅电极在电化学吸、放锂循环后体积膨胀率为300%,但电池依然保持良好的循环寿命。在1.5~0.005 V (vs Li+/Li)和0.1 mA·cm-2条件下,该薄膜电极循环100 次后容量仍能保持在0.47 mAh·cm-2以上,为初始容量的84%。每周容量衰减率仅为初周的0.16%。HRTEM和SAED结果表明,该薄膜在电化学吸、放锂循环后仍为非晶态,这可能是其具有良好电化学循环寿命的主要原因。 相似文献
12.
Xiuxia Zuo Qinghua Yang Yaolong He Ya-Jun Cheng Shanshan Yin Jin Zhu Peter Müller-Buschbaum Yonggao Xia 《Molecules (Basel, Switzerland)》2022,27(21)
Porous silicon-based anode materials have gained much interest because the porous structure can effectively accommodate volume changes and release mechanical stress, leading to improved cycling performance. Magnesiothermic reduction has emerged as an effective way to convert silica into porous silicon with a good electrochemical performance. However, corrosive HF etching is normally a mandatory step to improve the electrochemical performance of the as-synthesized silicon, which significantly increases the safety risk. This has become one of the major issues that impedes practical application of the magnesiothermic reduction synthesis of the porous silicon anode. Here, a facile HF-free method is reported to synthesize macro-/mesoporous silicon with good cyclic and rate performance by simply increasing the reduction temperature from 700 °C to 800 °C and 900 °C. The mechanism for the structure change resulting from the increased temperature is elaborated. A finite element simulation indicated that the 3D continuous structure formed by the magnesiothermic reduction at 800 °C and 900 °C could undertake the mechanical stress effectively and was responsible for an improved cyclic stability compared to the silicon synthesized at 700 °C. 相似文献
13.
14.
钾元素在地壳中的储量丰富、来源广泛, 且物理化学性质与锂元素相似, 在离子电池领域中具有广阔的发展前景。但相比于锂离子, 钾离子半径较大, 在材料体相中的迁移速度较慢, 并使得材料承受较大的结构应力, 从而导致钾离子电池的电化学性能优势不足。因此, 开发具有稳定结构、能够可逆嵌脱的正负极材料和与之相匹配的电解液, 成为钾离子电池目前研究的热点话题。本文主要从钾离子电池的正极材料、负极材料以及电解液三方面来介绍钾离子电池在国内外最新研究进展, 并对钾离子电池未来发展方向做出一定的展望。 相似文献
15.
16.
二维石墨炔优异的物理和化学性质受到了广泛的关注。近几年,与石墨炔相关的理论、合成和应用研究快速发展,并取得显著成果。基于石墨炔独特的制备方式与可控的分子结构,其已经在很多传统的研究领域展现出潜力,也在一些新兴的研究方向上产生重要影响,表明石墨炔的研究正逐渐成为一个非常热门研究领域。而石墨炔在电化学储能方面的研究越来越多,文章概述了石墨炔与电化学储能相关的优异特性,总结了石墨炔的常规制备方法,重点讨论了在低温制备优势下石墨炔家族成员的迅速壮大和相应石墨炔新成员独特结构对电化学储锂和储钠行为的影响。 相似文献
17.
基于银镜反应,在动态下用稀氨水将银氨配离子还原为纳米银颗粒,并沉积在硅颗粒表面。与常用含银复合材料之银盐直接还原法和硝酸盐高温分解法相比,配位还原法具有制备工艺简单快速、银颗粒分散度高和银盐转化率高等特点。得到的硅/银复合材料中粒径小于20 nm的银颗粒均匀分布在硅颗粒表面,无其他杂质相。与纯硅粉负极相比,硅/银复合材料(含银10wt%)能有效抑制硅负极在循环初始阶段的容量快速衰减,30次循环可逆容量大于500 mAh·g-1。交流阻抗测试显示,纳米银颗粒的存在能显著提高电子电导,进而改善硅负极的循环稳定性。 相似文献
18.
19.
Min Jiang Junliang Chen Dr. Yuanyuan Ma Prof. Wei Luo Prof. Jianping Yang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(36):9320-9327
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter‘s agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h−1 even tested at 10 A g−1), cycling stability (stable reversible capacity of 547 mA h g−1 after 200 cycles at 1 A g−1) and applicability (a high reversible capacity of 101 mA h g−1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability. 相似文献